Spaces:
Running
on
Zero
Running
on
Zero
import types | |
from .models.model_manager import ModelManager | |
from .models.wan_video_dit import WanModel | |
from .models.wan_video_text_encoder import WanTextEncoder | |
from .models.wan_video_vae import WanVideoVAE | |
from .schedulers.flow_match import FlowMatchScheduler | |
from .base import BasePipeline | |
from .prompters import WanPrompter | |
import torch, os | |
from einops import rearrange | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
from typing import Optional | |
from .vram_management import enable_vram_management, AutoWrappedModule, AutoWrappedLinear | |
from .models.wan_video_text_encoder import T5RelativeEmbedding, T5LayerNorm | |
from .models.wan_video_dit import RMSNorm | |
from .models.wan_video_vae import RMS_norm, CausalConv3d, Upsample | |
class WanVideoPipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, tokenizer_path=None): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler(shift=5, sigma_min=0.0, extra_one_step=True) | |
self.prompter = WanPrompter(tokenizer_path=tokenizer_path) | |
self.text_encoder: WanTextEncoder = None | |
self.image_encoder = None | |
self.dit: WanModel = None | |
self.vae: WanVideoVAE = None | |
self.model_names = ['text_encoder', 'dit', 'vae', 'image_encoder'] | |
self.height_division_factor = 16 | |
self.width_division_factor = 16 | |
self.use_unified_sequence_parallel = False | |
self.sp_size = 1 | |
def enable_vram_management(self, num_persistent_param_in_dit=None): | |
dtype = next(iter(self.text_encoder.parameters())).dtype | |
enable_vram_management( | |
self.text_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Embedding: AutoWrappedModule, | |
T5RelativeEmbedding: AutoWrappedModule, | |
T5LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.dit.parameters())).dtype | |
enable_vram_management( | |
self.dit, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv3d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
RMSNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
max_num_param=num_persistent_param_in_dit, | |
overflow_module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
dtype = next(iter(self.vae.parameters())).dtype | |
enable_vram_management( | |
self.vae, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
RMS_norm: AutoWrappedModule, | |
CausalConv3d: AutoWrappedModule, | |
Upsample: AutoWrappedModule, | |
torch.nn.SiLU: AutoWrappedModule, | |
torch.nn.Dropout: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device=self.device, | |
computation_dtype=self.torch_dtype, | |
computation_device=self.device, | |
), | |
) | |
if self.image_encoder is not None: | |
dtype = next(iter(self.image_encoder.parameters())).dtype | |
enable_vram_management( | |
self.image_encoder, | |
module_map = { | |
torch.nn.Linear: AutoWrappedLinear, | |
torch.nn.Conv2d: AutoWrappedModule, | |
torch.nn.LayerNorm: AutoWrappedModule, | |
}, | |
module_config = dict( | |
offload_dtype=dtype, | |
offload_device="cpu", | |
onload_dtype=dtype, | |
onload_device="cpu", | |
computation_dtype=dtype, | |
computation_device=self.device, | |
), | |
) | |
self.enable_cpu_offload() | |
def fetch_models(self, model_manager: ModelManager): | |
text_encoder_model_and_path = model_manager.fetch_model("wan_video_text_encoder", require_model_path=True) | |
if text_encoder_model_and_path is not None: | |
self.text_encoder, tokenizer_path = text_encoder_model_and_path | |
self.prompter.fetch_models(self.text_encoder) | |
self.prompter.fetch_tokenizer(os.path.join(os.path.dirname(tokenizer_path), "google/umt5-xxl")) | |
self.dit = model_manager.fetch_model("wan_video_dit") | |
self.vae = model_manager.fetch_model("wan_video_vae") | |
self.image_encoder = model_manager.fetch_model("wan_video_image_encoder") | |
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, use_usp=False, infer=False): | |
if device is None: device = model_manager.device | |
if torch_dtype is None: torch_dtype = model_manager.torch_dtype | |
pipe = WanVideoPipeline(device=device, torch_dtype=torch_dtype) | |
pipe.fetch_models(model_manager) | |
if use_usp: | |
from xfuser.core.distributed import get_sequence_parallel_world_size, get_sp_group | |
from OmniAvatar.distributed.xdit_context_parallel import usp_attn_forward | |
for block in pipe.dit.blocks: | |
block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn) | |
pipe.sp_size = get_sequence_parallel_world_size() | |
pipe.use_unified_sequence_parallel = True | |
pipe.sp_group = get_sp_group() | |
return pipe | |
def denoising_model(self): | |
return self.dit | |
def encode_prompt(self, prompt, positive=True): | |
prompt_emb = self.prompter.encode_prompt(prompt, positive=positive, device=self.device) | |
return {"context": prompt_emb} | |
def encode_image(self, image, num_frames, height, width): | |
image = self.preprocess_image(image.resize((width, height))).to(self.device, dtype=self.torch_dtype) | |
clip_context = self.image_encoder.encode_image([image]) | |
clip_context = clip_context.to(dtype=self.torch_dtype) | |
msk = torch.ones(1, num_frames, height//8, width//8, device=self.device, dtype=self.torch_dtype) | |
msk[:, 1:] = 0 | |
msk = torch.concat([torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:]], dim=1) | |
msk = msk.view(1, msk.shape[1] // 4, 4, height//8, width//8) | |
msk = msk.transpose(1, 2)[0] | |
vae_input = torch.concat([image.transpose(0, 1), torch.zeros(3, num_frames-1, height, width).to(image.device, dtype=self.torch_dtype)], dim=1) | |
y = self.vae.encode([vae_input.to(dtype=self.torch_dtype, device=self.device)], device=self.device)[0] | |
y = torch.concat([msk, y]) | |
y = y.unsqueeze(0) | |
clip_context = clip_context.to(dtype=self.torch_dtype, device=self.device) | |
y = y.to(dtype=self.torch_dtype, device=self.device) | |
return {"clip_feature": clip_context, "y": y} | |
def tensor2video(self, frames): | |
frames = rearrange(frames, "C T H W -> T H W C") | |
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def prepare_extra_input(self, latents=None): | |
return {} | |
def encode_video(self, input_video, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
latents = self.vae.encode(input_video, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def decode_video(self, latents, tiled=True, tile_size=(34, 34), tile_stride=(18, 16)): | |
frames = self.vae.decode(latents, device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
return frames | |
def prepare_unified_sequence_parallel(self): | |
return {"use_unified_sequence_parallel": self.use_unified_sequence_parallel} | |
def log_video( | |
self, | |
lat, | |
prompt, | |
fixed_frame=0, # lat frames | |
image_emb={}, | |
audio_emb={}, | |
negative_prompt="", | |
cfg_scale=5.0, | |
audio_cfg_scale=5.0, | |
num_inference_steps=50, | |
denoising_strength=1.0, | |
sigma_shift=5.0, | |
tiled=True, | |
tile_size=(30, 52), | |
tile_stride=(15, 26), | |
tea_cache_l1_thresh=None, | |
tea_cache_model_id="", | |
progress_bar_cmd=None, | |
return_latent=False, | |
): | |
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
# Scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift) | |
lat = lat.to(dtype=self.torch_dtype) | |
latents = lat.clone() | |
latents = torch.randn_like(latents, dtype=self.torch_dtype) | |
# Encode prompts | |
self.load_models_to_device(["text_encoder"]) | |
prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
if cfg_scale != 1.0: | |
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
# Extra input | |
extra_input = self.prepare_extra_input(latents) | |
# TeaCache | |
tea_cache_posi = {"tea_cache": None} | |
tea_cache_nega = {"tea_cache": None} | |
# Denoise | |
self.load_models_to_device(["dit"]) | |
for progress_id, timestep in enumerate(tqdm(self.scheduler.timesteps) if progress_bar_cmd is None else self.scheduler.timesteps ): | |
if fixed_frame > 0: # new | |
latents[:, :, :fixed_frame] = lat[:, :, :fixed_frame] | |
timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) | |
# Inference | |
noise_pred_posi = self.dit(x=latents, timestep=timestep, **prompt_emb_posi, **image_emb, **audio_emb, **tea_cache_posi, **extra_input) | |
if cfg_scale != 1.0: | |
audio_emb_uc = {} | |
for key in audio_emb.keys(): | |
audio_emb_uc[key] = torch.zeros_like(audio_emb[key], dtype=self.torch_dtype) | |
if audio_cfg_scale == cfg_scale: | |
noise_pred_nega = self.dit(x=latents, timestep=timestep, **prompt_emb_nega, **image_emb, **audio_emb_uc, **tea_cache_nega, **extra_input) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
tea_cache_nega_audio = {"tea_cache": None} | |
audio_noise_pred_nega = self.dit(x=latents, timestep=timestep, **prompt_emb_posi, **image_emb, **audio_emb_uc, **tea_cache_nega_audio, **extra_input) | |
text_noise_pred_nega = self.dit(x=latents, timestep=timestep, **prompt_emb_nega, **image_emb, **audio_emb_uc, **tea_cache_nega, **extra_input) | |
noise_pred = text_noise_pred_nega + cfg_scale * (audio_noise_pred_nega - text_noise_pred_nega) + audio_cfg_scale * (noise_pred_posi - audio_noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
# Scheduler | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
if progress_bar_cmd is not None: | |
progress_bar_cmd.update(1) | |
if fixed_frame > 0: # new | |
latents[:, :, :fixed_frame] = lat[:, :, :fixed_frame] | |
# Decode | |
self.load_models_to_device(['vae']) | |
frames = self.decode_video(latents, **tiler_kwargs) | |
recons = self.decode_video(lat, **tiler_kwargs) | |
self.load_models_to_device([]) | |
frames = (frames.permute(0, 2, 1, 3, 4).float() + 1.0) / 2.0 | |
recons = (recons.permute(0, 2, 1, 3, 4).float() + 1.0) / 2.0 | |
if return_latent: | |
return frames, recons, latents | |
return frames, recons | |
class TeaCache: | |
def __init__(self, num_inference_steps, rel_l1_thresh, model_id): | |
self.num_inference_steps = num_inference_steps | |
self.step = 0 | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = None | |
self.rel_l1_thresh = rel_l1_thresh | |
self.previous_residual = None | |
self.previous_hidden_states = None | |
self.coefficients_dict = { | |
"Wan2.1-T2V-1.3B": [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02], | |
"Wan2.1-T2V-14B": [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01], | |
"Wan2.1-I2V-14B-480P": [2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01], | |
"Wan2.1-I2V-14B-720P": [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02], | |
} | |
if model_id not in self.coefficients_dict: | |
supported_model_ids = ", ".join([i for i in self.coefficients_dict]) | |
raise ValueError(f"{model_id} is not a supported TeaCache model id. Please choose a valid model id in ({supported_model_ids}).") | |
self.coefficients = self.coefficients_dict[model_id] | |
def check(self, dit: WanModel, x, t_mod): | |
modulated_inp = t_mod.clone() | |
if self.step == 0 or self.step == self.num_inference_steps - 1: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
coefficients = self.coefficients | |
rescale_func = np.poly1d(coefficients) | |
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) | |
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: | |
should_calc = False | |
else: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = modulated_inp | |
self.step += 1 | |
if self.step == self.num_inference_steps: | |
self.step = 0 | |
if should_calc: | |
self.previous_hidden_states = x.clone() | |
return not should_calc | |
def store(self, hidden_states): | |
self.previous_residual = hidden_states - self.previous_hidden_states | |
self.previous_hidden_states = None | |
def update(self, hidden_states): | |
hidden_states = hidden_states + self.previous_residual | |
return hidden_states |