Spaces:
Running
on
Zero
Running
on
Zero
| from .base_prompter import BasePrompter | |
| from ..models.wan_video_text_encoder import WanTextEncoder | |
| from transformers import AutoTokenizer | |
| import os, torch | |
| import ftfy | |
| import html | |
| import string | |
| import regex as re | |
| def basic_clean(text): | |
| text = ftfy.fix_text(text) | |
| text = html.unescape(html.unescape(text)) | |
| return text.strip() | |
| def whitespace_clean(text): | |
| text = re.sub(r'\s+', ' ', text) | |
| text = text.strip() | |
| return text | |
| def canonicalize(text, keep_punctuation_exact_string=None): | |
| text = text.replace('_', ' ') | |
| if keep_punctuation_exact_string: | |
| text = keep_punctuation_exact_string.join( | |
| part.translate(str.maketrans('', '', string.punctuation)) | |
| for part in text.split(keep_punctuation_exact_string)) | |
| else: | |
| text = text.translate(str.maketrans('', '', string.punctuation)) | |
| text = text.lower() | |
| text = re.sub(r'\s+', ' ', text) | |
| return text.strip() | |
| class HuggingfaceTokenizer: | |
| def __init__(self, name, seq_len=None, clean=None, **kwargs): | |
| assert clean in (None, 'whitespace', 'lower', 'canonicalize') | |
| self.name = name | |
| self.seq_len = seq_len | |
| self.clean = clean | |
| # init tokenizer | |
| self.tokenizer = AutoTokenizer.from_pretrained(name, **kwargs) | |
| self.vocab_size = self.tokenizer.vocab_size | |
| def __call__(self, sequence, **kwargs): | |
| return_mask = kwargs.pop('return_mask', False) | |
| # arguments | |
| _kwargs = {'return_tensors': 'pt'} | |
| if self.seq_len is not None: | |
| _kwargs.update({ | |
| 'padding': 'max_length', | |
| 'truncation': True, | |
| 'max_length': self.seq_len | |
| }) | |
| _kwargs.update(**kwargs) | |
| # tokenization | |
| if isinstance(sequence, str): | |
| sequence = [sequence] | |
| if self.clean: | |
| sequence = [self._clean(u) for u in sequence] | |
| ids = self.tokenizer(sequence, **_kwargs) | |
| # output | |
| if return_mask: | |
| return ids.input_ids, ids.attention_mask | |
| else: | |
| return ids.input_ids | |
| def _clean(self, text): | |
| if self.clean == 'whitespace': | |
| text = whitespace_clean(basic_clean(text)) | |
| elif self.clean == 'lower': | |
| text = whitespace_clean(basic_clean(text)).lower() | |
| elif self.clean == 'canonicalize': | |
| text = canonicalize(basic_clean(text)) | |
| return text | |
| class WanPrompter(BasePrompter): | |
| def __init__(self, tokenizer_path=None, text_len=512): | |
| super().__init__() | |
| self.text_len = text_len | |
| self.text_encoder = None | |
| self.fetch_tokenizer(tokenizer_path) | |
| def fetch_tokenizer(self, tokenizer_path=None): | |
| if tokenizer_path is not None: | |
| self.tokenizer = HuggingfaceTokenizer(name=tokenizer_path, seq_len=self.text_len, clean='whitespace') | |
| def fetch_models(self, text_encoder: WanTextEncoder = None): | |
| self.text_encoder = text_encoder | |
| def encode_prompt(self, prompt, positive=True, device="cuda"): | |
| prompt = self.process_prompt(prompt, positive=positive) | |
| ids, mask = self.tokenizer(prompt, return_mask=True, add_special_tokens=True) | |
| ids = ids.to(device) | |
| mask = mask.to(device) | |
| seq_lens = mask.gt(0).sum(dim=1).long() | |
| prompt_emb = self.text_encoder(ids, mask) | |
| for i, v in enumerate(seq_lens): | |
| prompt_emb[:, v:] = 0 | |
| return prompt_emb | |