import gradio as gr from transformers import pipeline import numpy as np transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en") qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") def transcribe(audio): if audio is None: return "No audio recorded." sr, y = audio y = y.astype(np.float32) y /= np.max(np.abs(y)) return transcriber({"sampling_rate": sr, "raw": y})["text"] def answer(transcription): # This is a placeholder. In a real scenario, you'd have a predefined context or retrieve it based on the transcription. context = "Gradio is a Python library for building machine learning web apps. It was created to make it easy for machine learning developers to demo their work." result = qa_model(question=transcription, context=context) return result['answer'] def process_audio(audio): transcription = transcribe(audio) answer_result = answer(transcription) return transcription, answer_result with gr.Blocks() as demo: gr.Markdown("# Audio Transcription and Question Answering") audio_input = gr.Audio(label="Audio Input", sources=["microphone"]) transcription_output = gr.Textbox(label="Transcription") answer_output = gr.Textbox(label="Answer Result") submit_button = gr.Button("Submit") submit_button.click( fn=process_audio, inputs=[audio_input], outputs=[transcription_output, answer_output] ) demo.launch()