File size: 8,094 Bytes
50bd1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import random
from typing import Optional, Tuple

import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image, ImageDraw, ImageFilter
from torch.utils.data import Dataset


def generate_image(
        size: int = 32,
        contrast: Tuple[int, int] = (90, 110),
        blur_radius: Tuple[float, float] = (0.5, 1.5),
        shape: Optional[str] = None,
        max_background_intensity: int = 128,
        min_shape_intensity: Optional[int] = None,
        shape_size: Optional[int] = None,
        location: str = 'random',
        random_intensity: bool = False
) -> Tuple[Image.Image, str]:
    """
    Generate an image with a shape (circle or square) on a background.
    :param size: size of the image
    :param contrast: contrast of the shape
    :param blur_radius: radius of the Gaussian blur
    :param shape: shape type (circle or square)
    :param max_background_intensity: maximum intensity of the background
    :param min_shape_intensity: minimum intensity of the shape
    :param shape_size: size of the shape
    :param location: location of the shape ('random' or 'center')
    :param random_intensity: whether to randomly invert the shape intensity
    """
    background_intensity = random.randint(0, max_background_intensity)
    background = Image.new('L', (size, size), background_intensity)

    if shape:
        assert shape in ['circle', 'square'], "Wrong shape type"
    else:
        shape = random.choice(['circle', 'square'])

    if not min_shape_intensity:
        random_contrast = random.randint(*contrast)
        min_shape_intensity = min(background_intensity + random_contrast, 255)
    shape_intensity = random.randint(min_shape_intensity, 255)

    mask = Image.new('L', (size, size), 0)
    draw = ImageDraw.Draw(mask)

    if not shape_size:
        min_size = 8
        max_size = size // 2
        shape_size = random.randint(min_size, max_size)

    if location == 'random':
        max_pos = size - shape_size - 1
        top_left_x = random.randint(0, max_pos)
        top_left_y = random.randint(0, max_pos)
    else:
        top_left_x = (size - shape_size) // 2
        top_left_y = (size - shape_size) // 2

    if shape == 'square':
        draw.rectangle([top_left_x, top_left_y, top_left_x + shape_size, top_left_y + shape_size], fill=255)
    else:
        draw.ellipse([top_left_x, top_left_y, top_left_x + shape_size, top_left_y + shape_size], fill=255)

    if blur_radius:
        random_blur_radius = random.uniform(*blur_radius)
        mask = mask.filter(ImageFilter.GaussianBlur(radius=random_blur_radius))
    else:
        mask = mask.filter(ImageFilter.SMOOTH)

    shape_img = Image.new('L', (size, size), shape_intensity)
    img = Image.composite(shape_img, background, mask)

    if random_intensity and random.random() < 0.5:
        img = Image.eval(img, lambda x: 255 - x)

    return img, shape


class RandomPairDataset(Dataset):
    def __init__(
            self,
            shape_params: Optional[dict] = None,
            num_samples: int = 1000,
            train: bool = True,
            fixed_test_data: Optional[list] = None
    ):
        """
        Dataset for training a model to compare two images.
        :param shape_params: parameters for generate_image function
        :param num_samples: number of samples in the dataset
        :param train: whether to generate training or test data
        :param fixed_test_data: fixed test data (optional)
        """
        self.train = train
        self.num_samples = num_samples
        self.transform = T.Compose([
            T.ToTensor(),
            T.Normalize(mean=(0.5,), std=(0.5,))
        ])
        if not shape_params:
            self.shape_params = {}
        else:
            self.shape_params = shape_params

        if not self.train:
            if fixed_test_data is None:
                self.data = [self._generate_pair() for _ in range(num_samples)]
            else:
                self.data = fixed_test_data

    def __len__(self) -> int:
        return self.num_samples

    def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        if self.train:
            img1, shape1, img2, shape2, label = self._generate_pair()
        else:
            img1, shape1, img2, shape2, label = self.data[idx]

        img1 = self.transform(img1)
        img2 = self.transform(img2)

        return img1, img2, torch.tensor(label, dtype=torch.float32)

    def _generate_pair(self) -> Tuple[Image.Image, str, Image.Image, str, int]:
        img1, shape1 = generate_image(**self.shape_params)
        img2, shape2 = generate_image(**self.shape_params)
        label = 1 if shape1 == shape2 else 0

        return img1, shape1, img2, shape2, label


class RandomAugmentedDataset(Dataset):
    def __init__(
            self,
            augmentations: T.Compose,
            shape_params: Optional[dict] = None,
            num_samples: int = 1000,
            train: bool = True,
            fixed_test_data: Optional[list] = None
    ):
        """
        Dataset for training a model with contrastive learning.
        :param augmentations: augmentations to apply to the images
        :param shape_params: parameters for generate_image function
        :param num_samples: number of samples in the dataset
        :param train: whether to generate training or test data
        :param fixed_test_data: fixed test data (optional
        """
        self.train = train
        self.num_samples = num_samples
        self.augmentations = augmentations
        if not shape_params:
            self.shape_params = {}
        else:
            self.shape_params = shape_params

        if not self.train:
            if fixed_test_data is None:
                self.data = [self._generate_single() for _ in range(num_samples)]
            else:
                self.data = fixed_test_data

    def __len__(self) -> int:
        return self.num_samples

    def __getitem__(self, idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.train:
            img, _ = self._generate_single()
        else:
            img, _ = self.data[idx]
        view_1, view_2 = self.augmentations(img), self.augmentations(img)

        return view_1, view_2

    def _generate_single(self) -> Tuple[Image.Image, int]:
        img, shape = generate_image(**self.shape_params)
        label = 1 if shape == "circle" else 0

        return img, label


class AddGaussianNoise(object):
    def __init__(self, mean: float = 0.0, std: float = 0.05):
        self.mean = mean
        self.std = std

    def __call__(self, tensor: torch.Tensor) -> torch.Tensor:
        noise = torch.randn(tensor.size()) * self.std + self.mean
        tensor = tensor + noise
        return torch.clamp(tensor, 0., 1.)

    def __repr__(self):
        return f'{self.__class__.__name__}(mean={self.mean}, std={self.std})'


class ColorInversion(object):
    def __call__(self, image: Image.Image) -> Image.Image:
        return Image.eval(image, lambda x: 255 - x)

    def __repr__(self):
        return f'{self.__class__.__name__}()'


def get_byol_transforms() -> T.Compose:
    """
    Get augmentations for training with BYOL.
    """
    augmentations = T.Compose([
        T.RandomResizedCrop(size=32, scale=(0.8, 1.0), ratio=(0.9, 1.1)),
        T.RandomHorizontalFlip(p=0.5),
        T.RandomVerticalFlip(p=0.5),
        T.RandomRotation(degrees=15),
        T.ColorJitter(brightness=0.2, contrast=0.2),
        T.RandomApply([T.GaussianBlur(kernel_size=3, sigma=(0.1, 1.0))], p=0.5),
        T.RandomApply([ColorInversion()]),
        T.ToTensor(),
        T.RandomApply([AddGaussianNoise(mean=0.0, std=0.05)], p=0.5),
        T.Normalize(mean=(0.5,), std=(0.5,))
    ])
    return augmentations


def tensor_to_image(tensor: torch.Tensor) -> Image.Image:
    """
    Convert a tensor to a PIL image.
    """
    img_norm = tensor.cpu()[0]
    img_denorm = img_norm * 0.5 + 0.5
    arr = (img_denorm.numpy() * 255).astype(np.uint8)
    pil_img = Image.fromarray(arr, mode='L')
    return pil_img