Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,164 +1,222 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
from
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import base64
|
| 5 |
+
import io
|
| 6 |
+
from collections import Counter
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from ultralytics import YOLO
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
# Set page config
|
| 12 |
+
st.set_page_config(page_title="Object Detection App", layout="wide")
|
| 13 |
+
|
| 14 |
+
# Model paths
|
| 15 |
+
MODELS = {
|
| 16 |
+
'yolov8s.pt': './model/yolov8s.pt',
|
| 17 |
+
'yolov9m.pt': './model/yolov9m.pt'
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
# Load models on demand
|
| 21 |
+
@st.cache_resource
|
| 22 |
+
def get_model(model_name):
|
| 23 |
+
"""Load model if not already loaded"""
|
| 24 |
+
if model_name in MODELS and os.path.exists(MODELS[model_name]):
|
| 25 |
+
return YOLO(MODELS[model_name])
|
| 26 |
+
else:
|
| 27 |
+
raise ValueError(f"Model {model_name} not found")
|
| 28 |
+
|
| 29 |
+
def decode_base64_image(base64_string):
|
| 30 |
+
"""Base64 image string ko decode karna"""
|
| 31 |
+
# Remove data URL prefix if present
|
| 32 |
+
if ',' in base64_string:
|
| 33 |
+
base64_string = base64_string.split(',')[1]
|
| 34 |
+
|
| 35 |
+
image_data = base64.b64decode(base64_string)
|
| 36 |
+
image = Image.open(io.BytesIO(image_data))
|
| 37 |
+
return np.array(image)
|
| 38 |
+
|
| 39 |
+
def process_detections(results, model):
|
| 40 |
+
"""Process detection results into standard format"""
|
| 41 |
+
detections = []
|
| 42 |
+
for result in results:
|
| 43 |
+
boxes = result.boxes
|
| 44 |
+
for box in boxes:
|
| 45 |
+
# Bounding box coordinates
|
| 46 |
+
x1, y1, x2, y2 = box.xyxy[0]
|
| 47 |
+
|
| 48 |
+
# Confidence aur class
|
| 49 |
+
conf = box.conf[0]
|
| 50 |
+
cls = int(box.cls[0])
|
| 51 |
+
class_name = model.names[cls]
|
| 52 |
+
|
| 53 |
+
# Detection object banana
|
| 54 |
+
detection = {
|
| 55 |
+
'bbox': [float(x1), float(y1), float(x2-x1), float(y2-y1)],
|
| 56 |
+
'class': class_name,
|
| 57 |
+
'confidence': float(conf)
|
| 58 |
+
}
|
| 59 |
+
detections.append(detection)
|
| 60 |
+
return detections
|
| 61 |
+
|
| 62 |
+
# App title
|
| 63 |
+
st.title("Object Detection App")
|
| 64 |
+
|
| 65 |
+
# Sidebar for settings
|
| 66 |
+
st.sidebar.title("Settings")
|
| 67 |
+
|
| 68 |
+
# Available models info
|
| 69 |
+
available_models = [
|
| 70 |
+
{'name': 'yolov8s.pt', 'type': 'Object Detection', 'description': 'YOLOv8s (Fastest)'},
|
| 71 |
+
{'name': 'yolov9m.pt', 'type': 'Object Detection', 'description': 'YOLOv9m (Highest Accuracy)'},
|
| 72 |
+
]
|
| 73 |
+
|
| 74 |
+
# Model selection
|
| 75 |
+
model_options = {m['name']: f"{m['name']} - {m['description']}" for m in available_models}
|
| 76 |
+
model_name = st.sidebar.selectbox("Select Model", options=list(model_options.keys()), format_func=lambda x: model_options[x])
|
| 77 |
+
|
| 78 |
+
# Confidence threshold
|
| 79 |
+
confidence = st.sidebar.slider("Confidence Threshold", min_value=0.1, max_value=1.0, value=0.25, step=0.05)
|
| 80 |
+
|
| 81 |
+
# Tab selection
|
| 82 |
+
tab1, tab2 = st.tabs(["Single Image", "Multiple Images"])
|
| 83 |
+
|
| 84 |
+
with tab1:
|
| 85 |
+
st.header("Single Image Detection")
|
| 86 |
+
|
| 87 |
+
# Image upload
|
| 88 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 89 |
+
|
| 90 |
+
if uploaded_file is not None:
|
| 91 |
+
# Display uploaded image
|
| 92 |
+
image = Image.open(uploaded_file)
|
| 93 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 94 |
+
|
| 95 |
+
# Process button
|
| 96 |
+
if st.button("Detect Objects"):
|
| 97 |
+
try:
|
| 98 |
+
with st.spinner("Detecting objects..."):
|
| 99 |
+
# Load model
|
| 100 |
+
model = get_model(model_name)
|
| 101 |
+
|
| 102 |
+
# Convert to numpy array
|
| 103 |
+
image_np = np.array(image)
|
| 104 |
+
|
| 105 |
+
# Object detection
|
| 106 |
+
results = model(image_np, conf=confidence)
|
| 107 |
+
|
| 108 |
+
# Process results
|
| 109 |
+
detections = process_detections(results, model)
|
| 110 |
+
|
| 111 |
+
# Object grouping
|
| 112 |
+
object_counts = Counter(det['class'] for det in detections)
|
| 113 |
+
grouped_objects = [
|
| 114 |
+
{'class': obj, 'count': count}
|
| 115 |
+
for obj, count in object_counts.items()
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
# Display results if any detections found
|
| 119 |
+
if detections:
|
| 120 |
+
# Draw bounding boxes on image
|
| 121 |
+
result_image = image_np.copy()
|
| 122 |
+
for det in detections:
|
| 123 |
+
x, y, w, h = [int(val) for val in det['bbox']]
|
| 124 |
+
cv2.rectangle(result_image, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 125 |
+
cv2.putText(result_image, f"{det['class']} {det['confidence']:.2f}",
|
| 126 |
+
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 127 |
+
|
| 128 |
+
# Show image with detections
|
| 129 |
+
st.image(result_image, caption="Detection Results", use_column_width=True)
|
| 130 |
+
|
| 131 |
+
# Display summary
|
| 132 |
+
st.subheader("Detection Summary")
|
| 133 |
+
for obj in grouped_objects:
|
| 134 |
+
st.write(f"- {obj['class']}: {obj['count']}")
|
| 135 |
+
|
| 136 |
+
# Display detection details
|
| 137 |
+
st.subheader("Detection Details")
|
| 138 |
+
for i, det in enumerate(detections, 1):
|
| 139 |
+
st.write(f"#{i}: {det['class']} (Confidence: {det['confidence']:.2f})")
|
| 140 |
+
else:
|
| 141 |
+
st.info("No objects detected in the image.")
|
| 142 |
+
|
| 143 |
+
except Exception as e:
|
| 144 |
+
st.error(f"Error processing image: {str(e)}")
|
| 145 |
+
|
| 146 |
+
with tab2:
|
| 147 |
+
st.header("Multiple Images Detection")
|
| 148 |
+
|
| 149 |
+
uploaded_files = st.file_uploader("Upload multiple images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
|
| 150 |
+
|
| 151 |
+
if uploaded_files:
|
| 152 |
+
st.write(f"{len(uploaded_files)} images uploaded")
|
| 153 |
+
|
| 154 |
+
# Process button
|
| 155 |
+
if st.button("Detect Objects in All Images"):
|
| 156 |
+
try:
|
| 157 |
+
with st.spinner("Detecting objects in multiple images..."):
|
| 158 |
+
# Load model
|
| 159 |
+
model = get_model(model_name)
|
| 160 |
+
|
| 161 |
+
# Process each image
|
| 162 |
+
all_detections = []
|
| 163 |
+
|
| 164 |
+
for i, file in enumerate(uploaded_files):
|
| 165 |
+
# Read image
|
| 166 |
+
image = Image.open(file)
|
| 167 |
+
image_np = np.array(image)
|
| 168 |
+
|
| 169 |
+
# Object detection
|
| 170 |
+
results = model(image_np, conf=confidence)
|
| 171 |
+
|
| 172 |
+
# Process results
|
| 173 |
+
detections = process_detections(results, model)
|
| 174 |
+
all_detections.append(detections)
|
| 175 |
+
|
| 176 |
+
# Create columns for image display
|
| 177 |
+
col1, col2 = st.columns(2)
|
| 178 |
+
|
| 179 |
+
with col1:
|
| 180 |
+
st.write(f"Image {i+1}: {file.name}")
|
| 181 |
+
st.image(image, caption=f"Original - {file.name}", use_column_width=True)
|
| 182 |
+
|
| 183 |
+
with col2:
|
| 184 |
+
# Draw bounding boxes
|
| 185 |
+
result_image = image_np.copy()
|
| 186 |
+
for det in detections:
|
| 187 |
+
x, y, w, h = [int(val) for val in det['bbox']]
|
| 188 |
+
cv2.rectangle(result_image, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
| 189 |
+
cv2.putText(result_image, f"{det['class']} {det['confidence']:.2f}",
|
| 190 |
+
(x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
| 191 |
+
|
| 192 |
+
st.image(result_image, caption=f"Detections - {file.name}", use_column_width=True)
|
| 193 |
+
|
| 194 |
+
# Display detections for this image
|
| 195 |
+
object_counts = Counter(det['class'] for det in detections)
|
| 196 |
+
st.write("Detected objects:")
|
| 197 |
+
for obj, count in object_counts.items():
|
| 198 |
+
st.write(f"- {obj}: {count}")
|
| 199 |
+
|
| 200 |
+
st.divider()
|
| 201 |
+
|
| 202 |
+
# Overall summary
|
| 203 |
+
st.subheader("Overall Detection Summary")
|
| 204 |
+
all_objects = []
|
| 205 |
+
for detections in all_detections:
|
| 206 |
+
all_objects.extend([det['class'] for det in detections])
|
| 207 |
+
|
| 208 |
+
total_counts = Counter(all_objects)
|
| 209 |
+
for obj, count in total_counts.items():
|
| 210 |
+
st.write(f"- {obj}: {count} (across all images)")
|
| 211 |
+
|
| 212 |
+
except Exception as e:
|
| 213 |
+
st.error(f"Error processing images: {str(e)}")
|
| 214 |
+
|
| 215 |
+
# About section
|
| 216 |
+
st.sidebar.markdown("---")
|
| 217 |
+
st.sidebar.header("About")
|
| 218 |
+
st.sidebar.info("""
|
| 219 |
+
This app uses YOLO models for object detection.
|
| 220 |
+
- YOLOv8s: Faster detection
|
| 221 |
+
- YOLOv9m: Higher accuracy
|
| 222 |
+
""")
|