import openai from docx import Document from pdfminer.high_level import extract_text from transformers import GPT2Tokenizer from dataclasses import dataclass from typing import List from tqdm import tqdm import os import pandas as pd import re EMBEDDING_SEG_LEN = 1500 COMPLETIONS_MODEL = "text-davinci-003" EMBEDDING_MODEL = "gpt-4" openai.api_key = os.environ["OPENAI_API_KEY"] EMBEDDING_CTX_LENGTH = 8191 EMBEDDING_ENCODING = "cl100k_base" ENCODING = "gpt2" @dataclass class Paragraph: page_num: int paragraph_num: int content: str def read_pdf_pdfminer(file_path) -> List[Paragraph]: text = extract_text(file_path).replace('\n', ' ').strip() paragraphs = batched(text, EMBEDDING_SEG_LEN) paragraphs_objs = [] paragraph_num = 1 for p in paragraphs: para = Paragraph(0, paragraph_num, p) paragraphs_objs.append(para) paragraph_num += 1 return paragraphs_objs def read_docx(file) -> List[Paragraph]: doc = Document(file) paragraphs = [] for paragraph_num, paragraph in enumerate(doc.paragraphs, start=1): content = paragraph.text.strip() if content: para = Paragraph(1, paragraph_num, content) paragraphs.append(para) return paragraphs def count_tokens(text): tokenizer = GPT2Tokenizer.from_pretrained('gpt2') return len(tokenizer.encode(text)) def batched(iterable, n): l = len(iterable) for ndx in range(0, l, n): yield iterable[ndx : min(ndx + n, l)] def compute_doc_embeddings(df): embeddings = {} for index, row in tqdm(df.iterrows(), total=df.shape[0]): doc = row["content"] doc_embedding = get_embedding(doc) embeddings[index] = doc_embedding return embeddings def enhanced_context_extraction(document, keywords, top_n=5): paragraphs = [para for para in document.split("\n") if para] def score_paragraph(para, keywords): keyword_count = sum([para.lower().count(keyword) for keyword in keywords]) positions = [para.lower().find(keyword) for keyword in keywords if keyword in para.lower()] proximity_score = 1 if max(positions) else 0 return keyword_count + proximity_score scores = [score_paragraph(para, keywords) for para in paragraphs] top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n] relevant_paragraphs = [paragraphs[i] for i in top_indices] return " ".join(relevant_paragraphs) def targeted_context_extraction(document, keywords, top_n=5): paragraphs = [para for para in document.split("\n") if para] scores = [sum([para.lower().count(keyword) for keyword in keywords]) for para in paragraphs] top_indices = sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)[:top_n] relevant_paragraphs = [paragraphs[i] for i in top_indices] return " ".join(relevant_paragraphs) def extract_page_and_clause_references(paragraph: str) -> str: page_matches = re.findall(r'Page (\d+)', paragraph) clause_matches = re.findall(r'Clause (\d+\.\d+)', paragraph) page_ref = f"Page {page_matches[0]}" if page_matches else "" clause_ref = f"Clause {clause_matches[0]}" if clause_matches else "" return f"({page_ref}, {clause_ref})".strip(", ") def refine_answer_based_on_question(question: str, answer: str) -> str: if "Does the agreement contain" in question: if "not" in answer or "No" in answer: refined_answer = f"No, the agreement does not contain {answer}" else: refined_answer = f"Yes, the agreement contains {answer}" else: refined_answer = answer return refined_answer def answer_query_with_context(question: str, df: pd.DataFrame, top_n_paragraphs: int = 5) -> str: question_words = set(question.split()) # Prioritizing certain keywords for better context extraction priority_keywords = ["duration", "term", "period", "month", "year", "day", "week", "agreement", "obligation", "effective date"] df['relevance_score'] = df['content'].apply(lambda x: len(question_words.intersection(set(x.split()))) + sum([x.lower().count(pk) for pk in priority_keywords])) most_relevant_paragraphs = df.sort_values(by='relevance_score', ascending=False).iloc[:top_n_paragraphs]['content'].tolist() context = "\n\n".join(most_relevant_paragraphs) prompt = f"Question: {question}\n\nContext: {context}\n\nAnswer:" response = openai.Completion.create(model=COMPLETIONS_MODEL, prompt=prompt, max_tokens=150) answer = response.choices[0].text.strip() # Refine the answer to include page and clause references and match the phrasing of the question references = extract_page_and_clause_references(context) answer = refine_answer_based_on_question(question, answer) + " " + references return answer def get_embedding(text): try: response = openai.Embed.create( model=EMBEDDING_MODEL, context=text, context_encoding=EMBEDDING_ENCODING, context_length=EMBEDDING_CTX_LENGTH ) embedding = response["embedding"] except Exception as e: print("Error obtaining embedding:", e) embedding = [] return embedding