app.py
CHANGED
@@ -1,29 +1,134 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def main():
|
7 |
-
st.
|
8 |
-
|
9 |
-
uploaded_files = st.file_uploader("Upload documents", type=['pdf', 'docx'], accept_multiple_files=True)
|
10 |
-
question = st.text_input("
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
st.write(answer)
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == "__main__":
|
29 |
main()
|
|
|
1 |
+
import time
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import search # Import the search module
|
7 |
+
from reportlab.lib.pagesizes import letter
|
8 |
+
from reportlab.pdfgen import canvas
|
9 |
+
from docx import Document
|
10 |
+
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
st.set_page_config(
|
14 |
+
page_title="DocGPT GT",
|
15 |
+
page_icon="speech_balloon",
|
16 |
+
layout="wide",
|
17 |
+
)
|
18 |
+
|
19 |
+
hide_streamlit_style = """
|
20 |
+
<style>
|
21 |
+
#MainMenu {visibility: hidden;}
|
22 |
+
footer {visibility: hidden;}
|
23 |
+
footer:after {
|
24 |
+
content:'2023';
|
25 |
+
visibility: visible;
|
26 |
+
display: block;
|
27 |
+
position: relative;
|
28 |
+
padding: 5px;
|
29 |
+
top: 2px;
|
30 |
+
}
|
31 |
+
</style>
|
32 |
+
"""
|
33 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
34 |
+
|
35 |
+
def save_as_pdf(conversation):
|
36 |
+
pdf_filename = "conversation.pdf"
|
37 |
+
c = canvas.Canvas(pdf_filename, pagesize=letter)
|
38 |
+
|
39 |
+
c.drawString(100, 750, "Conversation:")
|
40 |
+
y_position = 730
|
41 |
+
for q, a in conversation:
|
42 |
+
c.drawString(120, y_position, f"Q: {q}")
|
43 |
+
c.drawString(120, y_position - 20, f"A: {a}")
|
44 |
+
y_position -= 40
|
45 |
+
|
46 |
+
c.save()
|
47 |
+
|
48 |
+
st.markdown(f"Download [PDF](./{pdf_filename})")
|
49 |
+
|
50 |
+
def save_as_docx(conversation):
|
51 |
+
doc = Document()
|
52 |
+
doc.add_heading('Conversation', 0)
|
53 |
+
|
54 |
+
for q, a in conversation:
|
55 |
+
doc.add_paragraph(f'Q: {q}')
|
56 |
+
doc.add_paragraph(f'A: {a}')
|
57 |
+
|
58 |
+
doc_filename = "conversation.docx"
|
59 |
+
doc.save(doc_filename)
|
60 |
+
|
61 |
+
st.markdown(f"Download [DOCX](./{doc_filename})")
|
62 |
+
|
63 |
+
def save_as_xlsx(conversation):
|
64 |
+
df = pd.DataFrame(conversation, columns=["Question", "Answer"])
|
65 |
+
xlsx_filename = "conversation.xlsx"
|
66 |
+
df.to_excel(xlsx_filename, index=False)
|
67 |
+
|
68 |
+
st.markdown(f"Download [XLSX](./{xlsx_filename})")
|
69 |
+
|
70 |
+
def save_as_txt(conversation):
|
71 |
+
txt_filename = "conversation.txt"
|
72 |
+
with open(txt_filename, "w") as txt_file:
|
73 |
+
for q, a in conversation:
|
74 |
+
txt_file.write(f"Q: {q}\nA: {a}\n\n")
|
75 |
+
|
76 |
+
st.markdown(f"Download [TXT](./{txt_filename})")
|
77 |
|
78 |
def main():
|
79 |
+
st.markdown('<h1>Ask anything from Legal Texts</h1><p style="font-size: 12; color: gray;"></p>', unsafe_allow_html=True)
|
80 |
+
st.markdown("<h2>Upload documents</h2>", unsafe_allow_html=True)
|
81 |
+
uploaded_files = st.file_uploader("Upload one or more documents", type=['pdf', 'docx'], accept_multiple_files=True)
|
82 |
+
question = st.text_input("Ask a question based on the documents", key="question_input")
|
83 |
+
|
84 |
+
progress = st.progress(0)
|
85 |
+
for i in range(100):
|
86 |
+
progress.progress(i + 1)
|
87 |
+
time.sleep(0.01)
|
88 |
+
|
89 |
+
if uploaded_files:
|
90 |
+
df = pd.DataFrame(columns=["page_num", "paragraph_num", "content", "tokens"])
|
91 |
+
for uploaded_file in uploaded_files:
|
92 |
+
paragraphs = search.read_pdf_pdfminer(uploaded_file) if uploaded_file.type == "application/pdf" else search.read_docx(uploaded_file)
|
93 |
+
temp_df = pd.DataFrame(
|
94 |
+
[(p.page_num, p.paragraph_num, p.content, search.count_tokens(p.content))
|
95 |
+
for p in paragraphs],
|
96 |
+
columns=["page_num", "paragraph_num", "content", "tokens"]
|
97 |
+
)
|
98 |
+
df = pd.concat([df, temp_df], ignore_index=True)
|
99 |
+
|
100 |
+
if "interactions" not in st.session_state:
|
101 |
+
st.session_state["interactions"] = []
|
102 |
+
|
103 |
+
answer = ""
|
104 |
+
if question != st.session_state.get("last_question", ""):
|
105 |
+
st.text("Searching...")
|
106 |
+
answer = search.answer_query_with_context(question, df)
|
107 |
+
st.session_state["interactions"].append((question, answer))
|
108 |
st.write(answer)
|
109 |
+
|
110 |
+
st.markdown("### Interaction History")
|
111 |
+
for q, a in st.session_state["interactions"]:
|
112 |
+
st.write(f"**Q:** {q}\n\n**A:** {a}")
|
113 |
+
|
114 |
+
st.session_state["last_question"] = question
|
115 |
+
|
116 |
+
st.markdown("<h2>Sample paragraphs</h2>", unsafe_allow_html=True)
|
117 |
+
sample_size = min(len(df), 5)
|
118 |
+
st.dataframe(df.sample(n=sample_size))
|
119 |
+
|
120 |
+
if st.button("Save as PDF"):
|
121 |
+
save_as_pdf(st.session_state["interactions"])
|
122 |
+
if st.button("Save as DOCX"):
|
123 |
+
save_as_docx(st.session_state["interactions"])
|
124 |
+
if st.button("Save as XLSX"):
|
125 |
+
save_as_xlsx(st.session_state["interactions"])
|
126 |
+
if st.button("Save as TXT"):
|
127 |
+
save_as_txt(st.session_state["interactions"])
|
128 |
+
|
129 |
+
|
130 |
+
else:
|
131 |
+
st.markdown("<h2>Please upload a document to proceed.</h2>", unsafe_allow_html=True)
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
main()
|