Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ def main():
|
|
12 |
|
13 |
if api_key:
|
14 |
# Download BOE rates
|
15 |
-
|
16 |
|
17 |
# Allow user to upload Excel sheet
|
18 |
uploaded_file = st.file_uploader("Upload Excel file", type=["xlsx", "xls"])
|
@@ -31,7 +31,7 @@ def main():
|
|
31 |
late_interest_rate = st.number_input("Enter Late Interest Rate (%):", min_value=0.0, max_value=100.0, step=0.1)
|
32 |
|
33 |
# Calculate late interest if due dates and payment dates are available
|
34 |
-
if
|
35 |
# Create DataFrame with extracted due dates, payment dates, and placeholder amount
|
36 |
df_calculate = pd.DataFrame({
|
37 |
'due_date': due_dates,
|
@@ -40,7 +40,7 @@ def main():
|
|
40 |
})
|
41 |
|
42 |
# Calculate late interest
|
43 |
-
df_with_interest = calculate_late_interest(df_calculate, late_interest_rate
|
44 |
|
45 |
# Display calculated late interest
|
46 |
total_late_interest = df_with_interest['late_interest'].sum()
|
@@ -48,7 +48,14 @@ def main():
|
|
48 |
st.write(total_late_interest)
|
49 |
|
50 |
# Generate conversation prompt
|
51 |
-
prompt =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Allow user to engage in conversation
|
54 |
user_input = st.text_input("Start a conversation:")
|
@@ -61,7 +68,7 @@ def main():
|
|
61 |
{"role": "system", "content": prompt},
|
62 |
{"role": "user", "content": user_input}
|
63 |
],
|
64 |
-
max_tokens=1800
|
65 |
)
|
66 |
response = completion.choices[0].message['content']
|
67 |
st.write("AI's Response:")
|
@@ -69,50 +76,18 @@ def main():
|
|
69 |
else:
|
70 |
st.warning("Please enter your OpenAI API key.")
|
71 |
|
72 |
-
# Function to generate conversation prompt
|
73 |
-
def generate_conversation_prompt(df, boe_rates_df):
|
74 |
-
prompt = "I have analyzed the provided Excel sheet. "
|
75 |
-
|
76 |
-
# Include due dates, payment dates, and amounts from the Excel sheet
|
77 |
-
due_dates = df['due_date'].tolist()
|
78 |
-
payment_dates = df['payment_date'].tolist()
|
79 |
-
amounts = df['amount'].tolist()
|
80 |
-
prompt += f"The due dates in the sheet are: {', '.join(str(date) for date in due_dates)}. "
|
81 |
-
prompt += f"The payment dates in the sheet are: {', '.join(str(date) for date in payment_dates)}. "
|
82 |
-
prompt += f"The amounts in the sheet are: {', '.join(str(amount) for amount in amounts)}. "
|
83 |
-
|
84 |
-
# Include Bank of England base rates
|
85 |
-
if boe_rates_df is not None:
|
86 |
-
prompt += "The Bank of England base rates are as follows: \n"
|
87 |
-
for index, row in boe_rates_df.iterrows():
|
88 |
-
prompt += f"On {row['Date Changed']}, the base rate was {row['Current Bank Rate']}. \n"
|
89 |
-
|
90 |
-
prompt += "Based on this information, what would you like to discuss?"
|
91 |
-
|
92 |
-
return prompt
|
93 |
-
|
94 |
# Function to calculate late interest
|
95 |
-
def calculate_late_interest(data, late_interest_rate
|
96 |
-
# Convert due_date column to Timestamp objects
|
97 |
-
data['due_date'] = pd.to_datetime(data['due_date'])
|
98 |
-
data['payment_date'] = pd.to_datetime(data['payment_date'])
|
99 |
-
|
100 |
# Calculate late days and late interest
|
101 |
data['late_days'] = (data['payment_date'] - data['due_date']).dt.days.clip(lower=0)
|
102 |
data['late_interest'] = data['late_days'] * data['amount'] * (late_interest_rate / 100)
|
103 |
-
|
104 |
-
# Consider additional factors like Bank of England base rate
|
105 |
-
if boe_rates_df is not None:
|
106 |
-
data['boe_base_rate'] = data['due_date'].map(lambda x: get_boe_base_rate(x, boe_rates_df))
|
107 |
-
data['late_interest'] += data['amount'] * (data['boe_base_rate'] / 100)
|
108 |
-
|
109 |
return data
|
110 |
|
111 |
# Function to analyze Excel sheet and extract relevant information
|
112 |
def analyze_excel(df):
|
113 |
# Extract due dates and payment dates
|
114 |
-
due_dates =
|
115 |
-
payment_dates =
|
116 |
amounts = []
|
117 |
|
118 |
# Extract and clean amounts from third column
|
@@ -136,18 +111,10 @@ def download_boe_rates():
|
|
136 |
df = pd.read_html(response.text)[0]
|
137 |
df.to_csv('boe_rates.csv', index=False)
|
138 |
st.success("Bank of England rates downloaded successfully.")
|
139 |
-
return df # Return the downloaded data
|
140 |
else:
|
141 |
st.error("Failed to retrieve data from the Bank of England website.")
|
142 |
-
return None
|
143 |
except requests.RequestException as e:
|
144 |
st.error(f"Failed to download rates: {e}")
|
145 |
-
return None
|
146 |
-
|
147 |
-
def get_boe_base_rate(date, boe_rates_df):
|
148 |
-
closest_date_index = (boe_rates_df['Date Changed'] - pd.Timestamp(date)).abs().argsort()[0]
|
149 |
-
closest_date = boe_rates_df['Date Changed'].iloc[closest_date_index]
|
150 |
-
return boe_rates_df.loc[closest_date_index, 'Current Bank Rate']
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
main()
|
|
|
12 |
|
13 |
if api_key:
|
14 |
# Download BOE rates
|
15 |
+
download_boe_rates()
|
16 |
|
17 |
# Allow user to upload Excel sheet
|
18 |
uploaded_file = st.file_uploader("Upload Excel file", type=["xlsx", "xls"])
|
|
|
31 |
late_interest_rate = st.number_input("Enter Late Interest Rate (%):", min_value=0.0, max_value=100.0, step=0.1)
|
32 |
|
33 |
# Calculate late interest if due dates and payment dates are available
|
34 |
+
if due_dates and payment_dates:
|
35 |
# Create DataFrame with extracted due dates, payment dates, and placeholder amount
|
36 |
df_calculate = pd.DataFrame({
|
37 |
'due_date': due_dates,
|
|
|
40 |
})
|
41 |
|
42 |
# Calculate late interest
|
43 |
+
df_with_interest = calculate_late_interest(df_calculate, late_interest_rate)
|
44 |
|
45 |
# Display calculated late interest
|
46 |
total_late_interest = df_with_interest['late_interest'].sum()
|
|
|
48 |
st.write(total_late_interest)
|
49 |
|
50 |
# Generate conversation prompt
|
51 |
+
prompt = "I have analyzed the provided Excel sheet. "
|
52 |
+
if due_dates:
|
53 |
+
prompt += f"The due dates in the sheet are: {', '.join(str(date) for date in due_dates)}. "
|
54 |
+
if payment_dates:
|
55 |
+
prompt += f"The payment dates in the sheet are: {', '.join(str(date) for date in payment_dates)}. "
|
56 |
+
if amounts:
|
57 |
+
prompt += f"The amounts in the sheet are: {', '.join(str(amount) for amount in amounts)}. "
|
58 |
+
prompt += "Based on this information, what would you like to discuss?"
|
59 |
|
60 |
# Allow user to engage in conversation
|
61 |
user_input = st.text_input("Start a conversation:")
|
|
|
68 |
{"role": "system", "content": prompt},
|
69 |
{"role": "user", "content": user_input}
|
70 |
],
|
71 |
+
max_tokens=1800
|
72 |
)
|
73 |
response = completion.choices[0].message['content']
|
74 |
st.write("AI's Response:")
|
|
|
76 |
else:
|
77 |
st.warning("Please enter your OpenAI API key.")
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
# Function to calculate late interest
|
80 |
+
def calculate_late_interest(data, late_interest_rate):
|
|
|
|
|
|
|
|
|
81 |
# Calculate late days and late interest
|
82 |
data['late_days'] = (data['payment_date'] - data['due_date']).dt.days.clip(lower=0)
|
83 |
data['late_interest'] = data['late_days'] * data['amount'] * (late_interest_rate / 100)
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
return data
|
85 |
|
86 |
# Function to analyze Excel sheet and extract relevant information
|
87 |
def analyze_excel(df):
|
88 |
# Extract due dates and payment dates
|
89 |
+
due_dates = df.iloc[:, 0].dropna().tolist()
|
90 |
+
payment_dates = df.iloc[:, 1].dropna().tolist()
|
91 |
amounts = []
|
92 |
|
93 |
# Extract and clean amounts from third column
|
|
|
111 |
df = pd.read_html(response.text)[0]
|
112 |
df.to_csv('boe_rates.csv', index=False)
|
113 |
st.success("Bank of England rates downloaded successfully.")
|
|
|
114 |
else:
|
115 |
st.error("Failed to retrieve data from the Bank of England website.")
|
|
|
116 |
except requests.RequestException as e:
|
117 |
st.error(f"Failed to download rates: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
main()
|