Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,76 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import openai
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Function to calculate late interest
|
7 |
def calculate_late_interest(data, late_interest_rate):
|
@@ -25,70 +94,5 @@ def analyze_excel(df):
|
|
25 |
|
26 |
return due_dates, payment_dates, amounts
|
27 |
|
28 |
-
# Streamlit App
|
29 |
-
def main():
|
30 |
-
st.title("Invoice Interest Calculator and Conversation")
|
31 |
-
|
32 |
-
# Allow user to upload Excel sheet
|
33 |
-
uploaded_file = st.file_uploader("Upload Excel file", type=["xlsx", "xls"])
|
34 |
-
|
35 |
-
if uploaded_file is not None:
|
36 |
-
df = pd.read_excel(uploaded_file)
|
37 |
-
|
38 |
-
# Display uploaded data
|
39 |
-
st.write("Uploaded Data:")
|
40 |
-
st.write(df)
|
41 |
-
|
42 |
-
# Analyze Excel sheet
|
43 |
-
due_dates, payment_dates, amounts = analyze_excel(df)
|
44 |
-
|
45 |
-
# Allow user to specify late interest rate
|
46 |
-
late_interest_rate = st.number_input("Enter Late Interest Rate (%):", min_value=0.0, max_value=100.0, step=0.1)
|
47 |
-
|
48 |
-
# Calculate late interest if due dates and payment dates are available
|
49 |
-
if due_dates and payment_dates:
|
50 |
-
# Create DataFrame with extracted due dates, payment dates, and placeholder amount
|
51 |
-
df_calculate = pd.DataFrame({
|
52 |
-
'due_date': due_dates,
|
53 |
-
'payment_date': payment_dates,
|
54 |
-
'amount': [0] * len(due_dates) # Placeholder amount for calculation
|
55 |
-
})
|
56 |
-
|
57 |
-
# Calculate late interest
|
58 |
-
df_with_interest = calculate_late_interest(df_calculate, late_interest_rate)
|
59 |
-
|
60 |
-
# Display calculated late interest
|
61 |
-
st.write("Calculated Late Interest:")
|
62 |
-
st.write(df_with_interest['late_interest'].sum())
|
63 |
-
|
64 |
-
# Generate conversation prompt
|
65 |
-
prompt = "I have analyzed the provided Excel sheet. "
|
66 |
-
if due_dates:
|
67 |
-
prompt += f"The due dates in the sheet are: {', '.join(str(date) for date in due_dates)}. "
|
68 |
-
if payment_dates:
|
69 |
-
prompt += f"The payment dates in the sheet are: {', '.join(str(date) for date in payment_dates)}. "
|
70 |
-
if amounts:
|
71 |
-
prompt += f"The amounts in the sheet are: {', '.join(str(amount) for amount in amounts)}. "
|
72 |
-
prompt += "Based on this information, what would you like to discuss?"
|
73 |
-
|
74 |
-
# Allow user to engage in conversation
|
75 |
-
user_input = st.text_input("Start a conversation:")
|
76 |
-
if st.button("Send"):
|
77 |
-
if 'api_key' not in st.session_state:
|
78 |
-
st.session_state.api_key = st.text_input("Enter your OpenAI API key:")
|
79 |
-
openai.api_key = st.session_state.api_key # Set OpenAI API key
|
80 |
-
|
81 |
-
completion = openai.ChatCompletion.create(
|
82 |
-
model="gpt-3.5-turbo",
|
83 |
-
messages=[
|
84 |
-
{"role": "system", "content": prompt},
|
85 |
-
{"role": "user", "content": user_input}
|
86 |
-
],
|
87 |
-
max_tokens=800 # Adjust this value to allow longer responses
|
88 |
-
)
|
89 |
-
response = completion.choices[0].message['content']
|
90 |
-
st.write("AI's Response:")
|
91 |
-
st.write(response)
|
92 |
-
|
93 |
if __name__ == "__main__":
|
94 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import openai
|
4 |
+
|
5 |
+
# Streamlit App
|
6 |
+
def main():
|
7 |
+
st.title("Invoice Interest Calculator and Conversation")
|
8 |
+
|
9 |
+
# Prompt user for OpenAI API key
|
10 |
+
api_key = st.text_input("Enter your OpenAI API key:")
|
11 |
+
|
12 |
+
if api_key:
|
13 |
+
# Allow user to upload Excel sheet
|
14 |
+
uploaded_file = st.file_uploader("Upload Excel file", type=["xlsx", "xls"])
|
15 |
+
|
16 |
+
if uploaded_file is not None:
|
17 |
+
df = pd.read_excel(uploaded_file)
|
18 |
+
|
19 |
+
# Display uploaded data
|
20 |
+
st.write("Uploaded Data:")
|
21 |
+
st.write(df)
|
22 |
+
|
23 |
+
# Analyze Excel sheet
|
24 |
+
due_dates, payment_dates, amounts = analyze_excel(df)
|
25 |
+
|
26 |
+
# Allow user to specify late interest rate
|
27 |
+
late_interest_rate = st.number_input("Enter Late Interest Rate (%):", min_value=0.0, max_value=100.0, step=0.1)
|
28 |
+
|
29 |
+
# Calculate late interest if due dates and payment dates are available
|
30 |
+
if due_dates and payment_dates:
|
31 |
+
# Create DataFrame with extracted due dates, payment dates, and placeholder amount
|
32 |
+
df_calculate = pd.DataFrame({
|
33 |
+
'due_date': due_dates,
|
34 |
+
'payment_date': payment_dates,
|
35 |
+
'amount': amounts
|
36 |
+
})
|
37 |
+
|
38 |
+
# Calculate late interest
|
39 |
+
df_with_interest = calculate_late_interest(df_calculate, late_interest_rate)
|
40 |
+
|
41 |
+
# Display calculated late interest
|
42 |
+
total_late_interest = df_with_interest['late_interest'].sum()
|
43 |
+
st.write("Calculated Late Interest:")
|
44 |
+
st.write(total_late_interest)
|
45 |
+
|
46 |
+
# Generate conversation prompt
|
47 |
+
prompt = "I have analyzed the provided Excel sheet. "
|
48 |
+
if due_dates:
|
49 |
+
prompt += f"The due dates in the sheet are: {', '.join(str(date) for date in due_dates)}. "
|
50 |
+
if payment_dates:
|
51 |
+
prompt += f"The payment dates in the sheet are: {', '.join(str(date) for date in payment_dates)}. "
|
52 |
+
if amounts:
|
53 |
+
prompt += f"The amounts in the sheet are: {', '.join(str(amount) for amount in amounts)}. "
|
54 |
+
prompt += "Based on this information, what would you like to discuss?"
|
55 |
+
|
56 |
+
# Allow user to engage in conversation
|
57 |
+
user_input = st.text_input("Start a conversation:")
|
58 |
+
if st.button("Send"):
|
59 |
+
openai.api_key = api_key # Set user-provided OpenAI API key
|
60 |
+
|
61 |
+
completion = openai.ChatCompletion.create(
|
62 |
+
model="gpt-3.5-turbo",
|
63 |
+
messages=[
|
64 |
+
{"role": "system", "content": prompt},
|
65 |
+
{"role": "user", "content": user_input}
|
66 |
+
],
|
67 |
+
max_tokens=1800 # Adjust this value to allow longer responses
|
68 |
+
)
|
69 |
+
response = completion.choices[0].message['content']
|
70 |
+
st.write("AI's Response:")
|
71 |
+
st.write(response)
|
72 |
+
else:
|
73 |
+
st.warning("Please enter your OpenAI API key.")
|
74 |
|
75 |
# Function to calculate late interest
|
76 |
def calculate_late_interest(data, late_interest_rate):
|
|
|
94 |
|
95 |
return due_dates, payment_dates, amounts
|
96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
if __name__ == "__main__":
|
98 |
main()
|