rate_calc / app.py
albhu's picture
Update app.py
e8ce164 verified
raw
history blame
6.43 kB
import streamlit as st
import pandas as pd
import openai
import requests
# Streamlit App
def main():
st.title("Invoice Interest Calculator and Conversation")
# Prompt user for OpenAI API key
api_key = st.text_input("Enter your OpenAI API key:")
if api_key:
# Download BOE rates
boe_rates_df = download_boe_rates()
# Allow user to upload Excel sheet
uploaded_file = st.file_uploader("Upload Excel file", type=["xlsx", "xls"])
if uploaded_file is not None:
df = pd.read_excel(uploaded_file)
# Display uploaded data
st.write("Uploaded Data:")
st.write(df)
# Analyze Excel sheet
due_dates, payment_dates, amounts = analyze_excel(df)
# Allow user to specify late interest rate
late_interest_rate = st.number_input("Enter Late Interest Rate (%):", min_value=0.0, max_value=100.0, step=0.1)
# Calculate late interest if due dates and payment dates are available
if due_dates and payment_dates:
# Create DataFrame with extracted due dates, payment dates, and placeholder amount
df_calculate = pd.DataFrame({
'due_date': due_dates,
'payment_date': payment_dates,
'amount': amounts
})
# Calculate late interest
df_with_interest = calculate_late_interest(df_calculate, late_interest_rate, boe_rates_df)
# Display calculated late interest
total_late_interest = df_with_interest['late_interest'].sum()
st.write("Calculated Late Interest:")
st.write(total_late_interest)
# Generate conversation prompt
prompt = generate_conversation_prompt(df, boe_rates_df)
# Allow user to engage in conversation
user_input = st.text_input("Start a conversation:")
if st.button("Send"):
openai.api_key = api_key # Set user-provided OpenAI API key
completion = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": user_input}
],
max_tokens=1800 # Adjust this value to allow longer responses
)
response = completion.choices[0].message['content']
st.write("AI's Response:")
st.write(response)
else:
st.warning("Please enter your OpenAI API key.")
# Function to generate conversation prompt
def generate_conversation_prompt(df, boe_rates_df):
prompt = "I have analyzed the provided Excel sheet. "
# Include due dates, payment dates, and amounts from the Excel sheet
due_dates = df['due_date'].tolist()
payment_dates = df['payment_date'].tolist()
amounts = df['amount'].tolist()
prompt += f"The due dates in the sheet are: {', '.join(str(date) for date in due_dates)}. "
prompt += f"The payment dates in the sheet are: {', '.join(str(date) for date in payment_dates)}. "
prompt += f"The amounts in the sheet are: {', '.join(str(amount) for amount in amounts)}. "
# Include Bank of England base rates
if boe_rates_df is not None:
prompt += "The Bank of England base rates are as follows: \n"
for index, row in boe_rates_df.iterrows():
prompt += f"On {row['Date Changed']}, the base rate was {row['Current Bank Rate']}. \n"
prompt += "Based on this information, what would you like to discuss?"
return prompt
# Function to calculate late interest
def calculate_late_interest(data, late_interest_rate, boe_rates_df):
# Convert due_date column to Timestamp objects
data['due_date'] = pd.to_datetime(data['due_date'])
data['payment_date'] = pd.to_datetime(data['payment_date'])
# Calculate late days and late interest
data['late_days'] = (data['payment_date'] - data['due_date']).dt.days.clip(lower=0)
data['late_interest'] = data['late_days'] * data['amount'] * (late_interest_rate / 100)
# Consider additional factors like Bank of England base rate
if boe_rates_df is not None:
data['boe_base_rate'] = data['due_date'].map(lambda x: get_boe_base_rate(x, boe_rates_df))
data['late_interest'] += data['amount'] * (data['boe_base_rate'] / 100)
return data
# Function to analyze Excel sheet and extract relevant information
def analyze_excel(df):
# Extract due dates and payment dates
due_dates = pd.to_datetime(df.iloc[:, 0], errors='coerce').dropna() # Convert to datetime and drop NaT values
payment_dates = pd.to_datetime(df.iloc[:, 1], errors='coerce').dropna() # Convert to datetime and drop NaT values
amounts = []
# Extract and clean amounts from third column
for amount in df.iloc[:, 2]:
if isinstance(amount, str):
amount = amount.replace('"', '').replace(',', '')
amounts.append(float(amount))
return due_dates, payment_dates, amounts
# Function to download Bank of England rates
def download_boe_rates():
try:
headers = {
'accept-language': 'en-US,en;q=0.9',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36'
}
url = 'https://www.bankofengland.co.uk/boeapps/database/Bank-Rate.asp'
response = requests.get(url, headers=headers)
if response.status_code == 200:
df = pd.read_html(response.text)[0]
df.to_csv('boe_rates.csv', index=False)
st.success("Bank of England rates downloaded successfully.")
return df # Return the downloaded data
else:
st.error("Failed to retrieve data from the Bank of England website.")
return None
except requests.RequestException as e:
st.error(f"Failed to download rates: {e}")
return None
def get_boe_base_rate(date, boe_rates_df):
closest_date_index = (boe_rates_df['Date Changed'] - pd.Timestamp(date)).abs().argsort()[0]
closest_date = boe_rates_df['Date Changed'].iloc[closest_date_index]
return boe_rates_df.loc[closest_date_index, 'Current Bank Rate']
if __name__ == "__main__":
main()