from transformers import AutoTokenizer, AutoModelForQuestionAnswering from flask import Flask, request, jsonify import torch # Modell betöltése tokenizer = AutoTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased") model = AutoModelForQuestionAnswering.from_pretrained("nlpaueb/legal-bert-base-uncased") app = Flask(__name__) @app.route("/answer", methods=["POST"]) def answer(): data = request.json context = data.get("context") question = data.get("question") # Tokenizálás és válasz előállítás inputs = tokenizer.encode_plus(question, context, return_tensors="pt") answer_start_scores, answer_end_scores = model(**inputs).values() # Legjobb válasz kiválasztása answer_start = torch.argmax(answer_start_scores) answer_end = torch.argmax(answer_end_scores) + 1 answer = tokenizer.convert_tokens_to_string( tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]) ) return jsonify({"answer": answer}) if __name__ == "__main__": app.run()