Spaces:
Sleeping
Sleeping
base
Browse files
app.py
CHANGED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
|
2 |
+
from flask import Flask, request, jsonify
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Modell betöltése
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
|
7 |
+
model = AutoModelForQuestionAnswering.from_pretrained("nlpaueb/legal-bert-base-uncased")
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
|
11 |
+
@app.route("/answer", methods=["POST"])
|
12 |
+
def answer():
|
13 |
+
data = request.json
|
14 |
+
context = data.get("context")
|
15 |
+
question = data.get("question")
|
16 |
+
|
17 |
+
# Tokenizálás és válasz előállítás
|
18 |
+
inputs = tokenizer.encode_plus(question, context, return_tensors="pt")
|
19 |
+
answer_start_scores, answer_end_scores = model(**inputs).values()
|
20 |
+
|
21 |
+
# Legjobb válasz kiválasztása
|
22 |
+
answer_start = torch.argmax(answer_start_scores)
|
23 |
+
answer_end = torch.argmax(answer_end_scores) + 1
|
24 |
+
answer = tokenizer.convert_tokens_to_string(
|
25 |
+
tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end])
|
26 |
+
)
|
27 |
+
|
28 |
+
return jsonify({"answer": answer})
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
app.run()
|