Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import librosa | |
import torch | |
from transformers import Wav2Vec2ForCTC, AutoProcessor | |
from huggingface_hub import hf_hub_download | |
from torchaudio.models.decoder import ctc_decoder | |
# https://github.com/facebookresearch/fairseq/tree/main/examples/mms/zero_shot | |
ASR_SAMPLING_RATE = 16_000 | |
WORD_SCORE_DEFAULT_IF_LM = -0.18 | |
WORD_SCORE_DEFAULT_IF_NOLM = -3.5 | |
LM_SCORE_DEFAULT = 1.48 | |
MODEL_ID = "mms-meta/mms-zeroshot-300m" | |
processor = AutoProcessor.from_pretrained(MODEL_ID) | |
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) | |
token_file = hf_hub_download( | |
repo_id=MODEL_ID, | |
filename="tokens.txt", | |
) | |
lm5gram = hf_hub_download( | |
repo_id="alakxender/w2v-bert-2.0-dhivehi-syn", | |
filename="language_model/5gram.bin", | |
) | |
lex_files = [ | |
"dv.domain.news.small.v1.lexicon", | |
"dv.domain.news.small.v2.lexicon", | |
"dv.domain.news.large.v1.lexicon", | |
"dv.domain.stories.small.v1.lexicon", | |
] | |
lexicon_file = hf_hub_download( | |
repo_type="dataset", | |
repo_id="alakxender/dv-domain-lexicons", | |
filename=lex_files[0], | |
) | |
def transcribe( | |
audio_data, | |
wscore=None, | |
lmscore=None, | |
wscore_usedefault=True, | |
lmscore_usedefault=True, | |
uselm=True, | |
reference=None, | |
): | |
if not audio_data: | |
yield "ERROR: Empty audio data" | |
return | |
# audio | |
if isinstance(audio_data, tuple): | |
# microphone | |
sr, audio_samples = audio_data | |
audio_samples = (audio_samples / 32768.0).astype(float) | |
if sr != ASR_SAMPLING_RATE: | |
audio_samples = librosa.resample( | |
audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE | |
) | |
else: | |
# file upload | |
assert isinstance(audio_data, str) | |
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0] | |
inputs = processor( | |
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt" | |
) | |
# set device | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
model.to(device) | |
inputs = inputs.to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs).logits | |
# params | |
if uselm == True: | |
lm_path=lm5gram | |
else: | |
lm_path=None | |
if lm_path is not None and not lm_path.strip(): | |
lm_path = None | |
if wscore_usedefault: | |
wscore = ( | |
WORD_SCORE_DEFAULT_IF_LM | |
if lm_path is not None | |
else WORD_SCORE_DEFAULT_IF_NOLM | |
) | |
if lmscore_usedefault: | |
lmscore = LM_SCORE_DEFAULT if lm_path is not None else 0 | |
beam_search_decoder = ctc_decoder( | |
lexicon=lexicon_file, | |
tokens=token_file, | |
lm=lm_path, | |
nbest=1, | |
beam_size=500, | |
beam_size_token=50, | |
lm_weight=lmscore, | |
word_score=wscore, | |
sil_score=0, | |
blank_token="<s>", | |
) | |
beam_search_result = beam_search_decoder(outputs.to("cpu")) | |
transcription = " ".join(beam_search_result[0][0].words).strip() | |
yield transcription | |
styles = """ | |
.thaana textarea { | |
font-size: 18px !important; | |
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important; | |
line-height: 1.8 !important; | |
} | |
.textbox2 textarea { | |
display: none; | |
} | |
""" | |
with gr.Blocks(css=styles) as demo: | |
gr.Markdown("# <center> Transcribe Dhivehi Audio with MMS-ZEROSHOT</center>") | |
with gr.Row(): | |
with gr.Column(): | |
audio = gr.Audio(label="Audio Input\n(use microphone or upload a file)",min_length=1,max_length=60) | |
with gr.Accordion("Advanced Settings", open=False): | |
gr.Markdown( | |
"The following parameters are used for beam-search decoding. Use the default values if you are not sure." | |
) | |
with gr.Row(): | |
with gr.Column(): | |
wscore_usedefault = gr.Checkbox( | |
label="Use Default Word Insertion Score", value=True | |
) | |
wscore = gr.Slider( | |
minimum=-10.0, | |
maximum=10.0, | |
value=WORD_SCORE_DEFAULT_IF_LM, | |
step=0.1, | |
interactive=False, | |
label="Word Insertion Score", | |
) | |
with gr.Column(): | |
lmscore_usedefault = gr.Checkbox( | |
label="Use Default Language Model Score", value=True | |
) | |
lmscore = gr.Slider( | |
minimum=-10.0, | |
maximum=10.0, | |
value=LM_SCORE_DEFAULT, | |
step=0.1, | |
interactive=False, | |
label="Language Model Score", | |
) | |
with gr.Column(): | |
uselm = gr.Checkbox( | |
label="Use LM", | |
value=True, | |
) | |
btn = gr.Button("Submit", elem_id="submit") | |
def update_slider(ws, ls, lm, alm): | |
ws_slider = gr.Slider( | |
minimum=-10.0, | |
maximum=10.0, | |
value=LM_SCORE_DEFAULT if (lm is not None or alm) else 0, | |
step=0.1, | |
interactive=not ws, | |
label="Word Insertion Score", | |
) | |
ls_slider = gr.Slider( | |
minimum=-10.0, | |
maximum=10.0, | |
value=WORD_SCORE_DEFAULT_IF_NOLM | |
if (lm is None and not alm) | |
else WORD_SCORE_DEFAULT_IF_LM, | |
step=0.1, | |
interactive=not ls, | |
label="Language Model Score", | |
) | |
return ws_slider, ls_slider | |
with gr.Column(): | |
text = gr.Textbox(label="Transcript",rtl=True,elem_classes="thaana") | |
reference = gr.Textbox(label="Reference Transcript", visible=False) | |
btn.click( | |
transcribe, | |
inputs=[ | |
audio, | |
wscore, | |
lmscore, | |
wscore_usedefault, | |
lmscore_usedefault, | |
uselm, | |
reference, | |
], | |
outputs=[text], | |
) | |
# Examples | |
gr.Examples( | |
examples=[ | |
[ | |
"samples/audio1.mp3", | |
"އަޅުގަނޑުވެސް ދާކަށް ބޭނުމެއްނުވި" | |
], | |
[ | |
"samples/audio2.wav", | |
"ރަނގަޅަށްވިއްޔާ އެވާނީ މުސްކުޅި ކުރެހުމަކަށް" | |
], | |
[ | |
"samples/audio3.wav", | |
"އެއީ ޞަހްޔޫނީންގެ ޒަމާންވީ ރޭވުމެއްގެ ދަށުން މެދުނުކެނޑި ކުރިއަށްވާ ޕްރޮގްރާމެއް" | |
], | |
], | |
inputs=[audio, reference], | |
label="Dhivehi Audio Samples", | |
) | |
demo.launch(show_api=False) |