Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,388 Bytes
b04ca6e 0dddab9 b04ca6e 353089a b04ca6e 0bbc91c b04ca6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import spaces
import gradio as gr
import librosa
import torch
from transformers import Wav2Vec2ForCTC, AutoProcessor
from huggingface_hub import hf_hub_download
from torchaudio.models.decoder import ctc_decoder
# https://github.com/facebookresearch/fairseq/tree/main/examples/mms/zero_shot
ASR_SAMPLING_RATE = 16_000
WORD_SCORE_DEFAULT_IF_LM = -0.18
WORD_SCORE_DEFAULT_IF_NOLM = -3.5
LM_SCORE_DEFAULT = 1.48
MODEL_ID = "mms-meta/mms-zeroshot-300m"
processor = AutoProcessor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
token_file = hf_hub_download(
repo_id=MODEL_ID,
filename="tokens.txt",
)
lm5gram = hf_hub_download(
repo_id="alakxender/w2v-bert-2.0-dhivehi-syn",
filename="language_model/5gram.bin",
)
lex_files = [
"dv.domain.news.small.v1.lexicon",
"dv.domain.news.small.v2.lexicon",
"dv.domain.news.large.v1.lexicon",
"dv.domain.stories.small.v1.lexicon",
]
lexicon_file = hf_hub_download(
repo_type="dataset",
repo_id="alakxender/dv-domain-lexicons",
filename=lex_files[0],
)
@spaces.GPU
def transcribe(
audio_data,
wscore=None,
lmscore=None,
wscore_usedefault=True,
lmscore_usedefault=True,
uselm=True,
reference=None,
):
if not audio_data:
yield "ERROR: Empty audio data"
return
# audio
if isinstance(audio_data, tuple):
# microphone
sr, audio_samples = audio_data
audio_samples = (audio_samples / 32768.0).astype(float)
if sr != ASR_SAMPLING_RATE:
audio_samples = librosa.resample(
audio_samples, orig_sr=sr, target_sr=ASR_SAMPLING_RATE
)
else:
# file upload
assert isinstance(audio_data, str)
audio_samples = librosa.load(audio_data, sr=ASR_SAMPLING_RATE, mono=True)[0]
inputs = processor(
audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt"
)
# set device
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
model.to(device)
inputs = inputs.to(device)
with torch.no_grad():
outputs = model(**inputs).logits
# params
if uselm == True:
lm_path=lm5gram
else:
lm_path=None
if lm_path is not None and not lm_path.strip():
lm_path = None
if wscore_usedefault:
wscore = (
WORD_SCORE_DEFAULT_IF_LM
if lm_path is not None
else WORD_SCORE_DEFAULT_IF_NOLM
)
if lmscore_usedefault:
lmscore = LM_SCORE_DEFAULT if lm_path is not None else 0
beam_search_decoder = ctc_decoder(
lexicon=lexicon_file,
tokens=token_file,
lm=lm_path,
nbest=1,
beam_size=500,
beam_size_token=50,
lm_weight=lmscore,
word_score=wscore,
sil_score=0,
blank_token="<s>",
)
beam_search_result = beam_search_decoder(outputs.to("cpu"))
transcription = " ".join(beam_search_result[0][0].words).strip()
yield transcription
styles = """
.thaana textarea {
font-size: 18px !important;
font-family: 'MV_Faseyha', 'Faruma', 'A_Faruma' !important;
line-height: 1.8 !important;
}
.textbox2 textarea {
display: none;
}
"""
with gr.Blocks(css=styles) as demo:
gr.Markdown("# <center> Transcribe Dhivehi Audio with MMS-ZEROSHOT</center>")
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Audio Input\n(use microphone or upload a file)",min_length=1,max_length=60)
with gr.Accordion("Advanced Settings", open=False):
gr.Markdown(
"The following parameters are used for beam-search decoding. Use the default values if you are not sure."
)
with gr.Row():
with gr.Column():
wscore_usedefault = gr.Checkbox(
label="Use Default Word Insertion Score", value=True
)
wscore = gr.Slider(
minimum=-10.0,
maximum=10.0,
value=WORD_SCORE_DEFAULT_IF_LM,
step=0.1,
interactive=False,
label="Word Insertion Score",
)
with gr.Column():
lmscore_usedefault = gr.Checkbox(
label="Use Default Language Model Score", value=True
)
lmscore = gr.Slider(
minimum=-10.0,
maximum=10.0,
value=LM_SCORE_DEFAULT,
step=0.1,
interactive=False,
label="Language Model Score",
)
with gr.Column():
uselm = gr.Checkbox(
label="Use LM",
value=True,
)
btn = gr.Button("Submit", elem_id="submit")
@gr.on(
inputs=[wscore_usedefault, lmscore_usedefault, uselm],
outputs=[wscore, lmscore],
)
def update_slider(ws, ls, lm, alm):
ws_slider = gr.Slider(
minimum=-10.0,
maximum=10.0,
value=LM_SCORE_DEFAULT if (lm is not None or alm) else 0,
step=0.1,
interactive=not ws,
label="Word Insertion Score",
)
ls_slider = gr.Slider(
minimum=-10.0,
maximum=10.0,
value=WORD_SCORE_DEFAULT_IF_NOLM
if (lm is None and not alm)
else WORD_SCORE_DEFAULT_IF_LM,
step=0.1,
interactive=not ls,
label="Language Model Score",
)
return ws_slider, ls_slider
with gr.Column():
text = gr.Textbox(label="Transcript",rtl=True,elem_classes="thaana")
reference = gr.Textbox(label="Reference Transcript", visible=False)
btn.click(
transcribe,
inputs=[
audio,
wscore,
lmscore,
wscore_usedefault,
lmscore_usedefault,
uselm,
reference,
],
outputs=[text],
)
# Examples
gr.Examples(
examples=[
[
"samples/audio1.mp3",
"އަޅުގަނޑުވެސް ދާކަށް ބޭނުމެއްނުވި"
],
[
"samples/audio2.wav",
"ރަނގަޅަށްވިއްޔާ އެވާނީ މުސްކުޅި ކުރެހުމަކަށް"
],
[
"samples/audio3.wav",
"އެއީ ޞަހްޔޫނީންގެ ޒަމާންވީ ރޭވުމެއްގެ ދަށުން މެދުނުކެނޑި ކުރިއަށްވާ ޕްރޮގްރާމެއް"
],
],
inputs=[audio, reference],
label="Dhivehi Audio Samples",
)
demo.launch(show_api=False) |