akshathmangudi commited on
Commit
c7c7522
·
verified ·
1 Parent(s): d4cdc15

Update tts_utils.py

Browse files
Files changed (1) hide show
  1. tts_utils.py +13 -2
tts_utils.py CHANGED
@@ -3,14 +3,25 @@ import torch
3
  from parler_tts import ParlerTTSForConditionalGeneration
4
  from transformers import AutoTokenizer
5
 
 
6
  def load_model():
7
  model = ParlerTTSForConditionalGeneration.from_pretrained(
8
  "ai4bharat/indic-parler-tts",
9
- torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
10
  )
 
 
 
 
 
 
 
 
11
  tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts")
12
  description_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts")
13
- return model, tokenizer, description_tokenizer
 
 
14
 
15
  def generate_speech(text, voice_prompt, model, tokenizer, description_tokenizer):
16
  device = "cuda" if torch.cuda.is_available() else "cpu"
 
3
  from parler_tts import ParlerTTSForConditionalGeneration
4
  from transformers import AutoTokenizer
5
 
6
+ # Updated load_model function in tts_utils.py
7
  def load_model():
8
  model = ParlerTTSForConditionalGeneration.from_pretrained(
9
  "ai4bharat/indic-parler-tts",
10
+ torch_dtype=torch.float32 # Force CPU-compatible dtype
11
  )
12
+
13
+ # Apply dynamic quantization to Linear layers
14
+ quantized_model = torch.ao.quantization.quantize_dynamic(
15
+ model,
16
+ {torch.nn.Linear}, # Target layer type
17
+ dtype=torch.qint8
18
+ )
19
+
20
  tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts")
21
  description_tokenizer = AutoTokenizer.from_pretrained("ai4bharat/indic-parler-tts")
22
+
23
+ return quantized_model, tokenizer, description_tokenizer
24
+
25
 
26
  def generate_speech(text, voice_prompt, model, tokenizer, description_tokenizer):
27
  device = "cuda" if torch.cuda.is_available() else "cpu"