Spaces:
Running
Running
| import os | |
| import random | |
| from typing import Dict, List | |
| import google.generativeai as genai | |
| import gradio as gr | |
| import openai | |
| from anthropic import Anthropic | |
| from openai import OpenAI # Add explicit OpenAI import | |
| def get_all_models(): | |
| """Get all available models from the registries.""" | |
| return [ | |
| "SambaNova: Meta-Llama-3.2-1B-Instruct", | |
| "SambaNova: Meta-Llama-3.2-3B-Instruct", | |
| "SambaNova: Llama-3.2-11B-Vision-Instruct", | |
| "SambaNova: Llama-3.2-90B-Vision-Instruct", | |
| "SambaNova: Meta-Llama-3.1-8B-Instruct", | |
| "SambaNova: Meta-Llama-3.1-70B-Instruct", | |
| "SambaNova: Meta-Llama-3.1-405B-Instruct", | |
| "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct", | |
| "Hyperbolic: meta-llama/Llama-3.2-3B-Instruct", | |
| "Hyperbolic: meta-llama/Meta-Llama-3.1-8B-Instruct", | |
| "Hyperbolic: meta-llama/Meta-Llama-3.1-70B-Instruct", | |
| "Hyperbolic: meta-llama/Meta-Llama-3-70B-Instruct", | |
| "Hyperbolic: NousResearch/Hermes-3-Llama-3.1-70B", | |
| "Hyperbolic: Qwen/Qwen2.5-72B-Instruct", | |
| "Hyperbolic: deepseek-ai/DeepSeek-V2.5", | |
| "Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct", | |
| ] | |
| def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str: | |
| """Generate a prompt for models to discuss and build upon previous | |
| responses.""" | |
| prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}" | |
| Previous responses from other AI models: | |
| {chr(10).join(f"- {response}" for response in previous_responses)} | |
| Please provide your perspective while: | |
| 1. Acknowledging key insights from previous responses | |
| 2. Adding any missing important points | |
| 3. Respectfully noting if you disagree with anything and explaining why | |
| 4. Building towards a complete answer | |
| Keep your response focused and concise (max 3-4 paragraphs).""" | |
| return prompt | |
| def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str: | |
| """Generate a prompt for final consensus building.""" | |
| return f"""Review this multi-AI discussion about: "{original_question}" | |
| Discussion history: | |
| {chr(10).join(discussion_history)} | |
| As a final synthesizer, please: | |
| 1. Identify the key points where all models agreed | |
| 2. Explain how any disagreements were resolved | |
| 3. Present a clear, unified answer that represents our collective best understanding | |
| 4. Note any remaining uncertainties or caveats | |
| Keep the final consensus concise but complete.""" | |
| def chat_with_openai(model: str, messages: List[Dict], api_key: str | None) -> str: | |
| import openai | |
| client = openai.OpenAI(api_key=api_key) | |
| response = client.chat.completions.create(model=model, messages=messages) | |
| return response.choices[0].message.content | |
| def chat_with_anthropic(messages: List[Dict], api_key: str | None) -> str: | |
| """Chat with Anthropic's Claude model.""" | |
| client = Anthropic(api_key=api_key) | |
| response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024) | |
| return response.content[0].text | |
| def chat_with_gemini(messages: List[Dict], api_key: str | None) -> str: | |
| """Chat with Gemini Pro model.""" | |
| genai.configure(api_key=api_key) | |
| model = genai.GenerativeModel("gemini-pro") | |
| # Convert messages to Gemini format | |
| gemini_messages = [] | |
| for msg in messages: | |
| role = "user" if msg["role"] == "user" else "model" | |
| gemini_messages.append({"role": role, "parts": [msg["content"]]}) | |
| response = model.generate_content([m["parts"][0] for m in gemini_messages]) | |
| return response.text | |
| def chat_with_sambanova( | |
| messages: List[Dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct" | |
| ) -> str: | |
| """Chat with SambaNova's models using their OpenAI-compatible API.""" | |
| client = openai.OpenAI( | |
| api_key=api_key, | |
| base_url="https://api.sambanova.ai/v1", | |
| ) | |
| response = client.chat.completions.create( | |
| model=model_name, messages=messages, temperature=0.1, top_p=0.1 # Use the specific model name passed in | |
| ) | |
| return response.choices[0].message.content | |
| def chat_with_hyperbolic( | |
| messages: List[Dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct" | |
| ) -> str: | |
| """Chat with Hyperbolic's models using their OpenAI-compatible API.""" | |
| client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1") | |
| # Add system message to the start of the messages list | |
| full_messages = [ | |
| {"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."}, | |
| *messages, | |
| ] | |
| response = client.chat.completions.create( | |
| model=model_name, # Use the specific model name passed in | |
| messages=full_messages, | |
| temperature=0.7, | |
| max_tokens=1024, | |
| ) | |
| return response.choices[0].message.content | |
| def multi_model_consensus( | |
| question: str, selected_models: List[str], rounds: int = 3, progress: gr.Progress = gr.Progress() | |
| ) -> list[tuple[str, str]]: | |
| if not selected_models: | |
| raise gr.Error("Please select at least one model to chat with.") | |
| chat_history = [] | |
| discussion_history = [] | |
| # Initial responses | |
| progress(0, desc="Getting initial responses...") | |
| initial_responses = [] | |
| for i, model in enumerate(selected_models): | |
| provider, model_name = model.split(": ", 1) | |
| try: | |
| if provider == "Anthropic": | |
| api_key = os.getenv("ANTHROPIC_API_KEY") | |
| response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key) | |
| elif provider == "SambaNova": | |
| api_key = os.getenv("SAMBANOVA_API_KEY") | |
| response = chat_with_sambanova( | |
| messages=[ | |
| {"role": "system", "content": "You are a helpful assistant"}, | |
| {"role": "user", "content": question}, | |
| ], | |
| api_key=api_key, | |
| ) | |
| elif provider == "Hyperbolic": # Add Hyperbolic case | |
| api_key = os.getenv("HYPERBOLIC_API_KEY") | |
| response = chat_with_hyperbolic(messages=[{"role": "user", "content": question}], api_key=api_key) | |
| else: # Gemini | |
| api_key = os.getenv("GEMINI_API_KEY") | |
| response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key) | |
| initial_responses.append(f"{model}: {response}") | |
| discussion_history.append(f"Initial response from {model}:\n{response}") | |
| chat_history.append((f"Initial response from {model}", response)) | |
| except Exception as e: | |
| chat_history.append((f"Error from {model}", str(e))) | |
| # Discussion rounds | |
| for round_num in range(rounds): | |
| progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...") | |
| round_responses = [] | |
| random.shuffle(selected_models) # Randomize order each round | |
| for model in selected_models: | |
| provider, model_name = model.split(": ", 1) | |
| try: | |
| discussion_prompt = generate_discussion_prompt(question, discussion_history) | |
| if provider == "Anthropic": | |
| api_key = os.getenv("ANTHROPIC_API_KEY") | |
| response = chat_with_anthropic( | |
| messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key | |
| ) | |
| elif provider == "SambaNova": | |
| api_key = os.getenv("SAMBANOVA_API_KEY") | |
| response = chat_with_sambanova( | |
| messages=[ | |
| {"role": "system", "content": "You are a helpful assistant"}, | |
| {"role": "user", "content": discussion_prompt}, | |
| ], | |
| api_key=api_key, | |
| ) | |
| elif provider == "Hyperbolic": # Add Hyperbolic case | |
| api_key = os.getenv("HYPERBOLIC_API_KEY") | |
| response = chat_with_hyperbolic( | |
| messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key | |
| ) | |
| else: # Gemini | |
| api_key = os.getenv("GEMINI_API_KEY") | |
| response = chat_with_gemini( | |
| messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key | |
| ) | |
| round_responses.append(f"{model}: {response}") | |
| discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}") | |
| chat_history.append((f"Round {round_num + 1} - {model}", response)) | |
| except Exception as e: | |
| chat_history.append((f"Error from {model} in round {round_num + 1}", str(e))) | |
| # Final consensus | |
| progress(0.9, desc="Building final consensus...") | |
| model = selected_models[0] | |
| provider, model_name = model.split(": ", 1) | |
| try: | |
| consensus_prompt = generate_consensus_prompt(question, discussion_history) | |
| if provider == "Anthropic": | |
| api_key = os.getenv("ANTHROPIC_API_KEY") | |
| final_consensus = chat_with_anthropic( | |
| messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key | |
| ) | |
| elif provider == "SambaNova": | |
| api_key = os.getenv("SAMBANOVA_API_KEY") | |
| final_consensus = chat_with_sambanova( | |
| messages=[ | |
| {"role": "system", "content": "You are a helpful assistant"}, | |
| {"role": "user", "content": consensus_prompt}, | |
| ], | |
| api_key=api_key, | |
| ) | |
| elif provider == "Hyperbolic": # Add Hyperbolic case | |
| api_key = os.getenv("HYPERBOLIC_API_KEY") | |
| final_consensus = chat_with_hyperbolic( | |
| messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key | |
| ) | |
| else: # Gemini | |
| api_key = os.getenv("GEMINI_API_KEY") | |
| final_consensus = chat_with_gemini( | |
| messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key | |
| ) | |
| except Exception as e: | |
| final_consensus = f"Error getting consensus from {model}: {str(e)}" | |
| chat_history.append(("Final Consensus", final_consensus)) | |
| progress(1.0, desc="Done!") | |
| return chat_history | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Experimental Multi-Model Consensus Chat") | |
| gr.Markdown( | |
| """Select multiple models to collaborate on answering your question. | |
| The models will discuss with each other and attempt to reach a consensus. | |
| Maximum 3 models can be selected at once.""" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_selector = gr.Dropdown( | |
| choices=get_all_models(), | |
| multiselect=True, | |
| label="Select Models (max 3)", | |
| info="Choose up to 3 models to participate in the discussion", | |
| value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"], | |
| max_choices=3, | |
| ) | |
| rounds_slider = gr.Slider( | |
| minimum=1, | |
| maximum=2, | |
| value=1, | |
| step=1, | |
| label="Discussion Rounds", | |
| info="Number of rounds of discussion between models", | |
| ) | |
| chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion") | |
| msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...") | |
| def respond(message, selected_models, rounds): | |
| chat_history = multi_model_consensus(message, selected_models, rounds) | |
| return chat_history | |
| msg.submit(respond, [msg, model_selector, rounds_slider], [chatbot], api_name="consensus_chat") | |
| for fn in demo.fns.values(): | |
| fn.api_name = False | |
| if __name__ == "__main__": | |
| demo.launch() | |