Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,345 Bytes
a2a8b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import os
import torch
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
# -------------------------------------------------
# Model setup (loaded once at startup)
# -------------------------------------------------
model_name = "Qwen/Qwen3-4B-Thinking-2507"
# Use environment variable to avoid downloading repeatedly in Gradio reloads
if not os.getenv("MODEL_LOADED"):
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True,
)
os.environ["MODEL_LOADED"] = "1"
# -------------------------------------------------
# Helper to generate a response
# -------------------------------------------------
@spaces.GPU(duration=120) # allocate GPU for up to 2 minutes per request
def generate_reply(user_message: str, history: list):
"""
Generates a reply using the Qwen model.
`history` is a list of (user, bot) tuples from previous turns.
"""
# Build the message list expected by the chat template
messages = [{"role": "system", "content": "You are a helpful assistant."}]
for user, bot in history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": bot})
messages.append({"role": "user", "content": user_message})
# Apply chat template to get the prompt text
prompt_text = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
model_inputs = tokenizer([prompt_text], return_tensors="pt").to(model.device)
# Generate tokens (allow large output; adjust as needed)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=1024, # reasonable limit for interactive chat
do_sample=True,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id,
)
# Remove the input tokens from the output
new_token_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# Try to split thinking (<think>) from final answer
try:
# Token id for </think> (151668) is model‑specific; adjust if needed
end_think_idx = len(new_token_ids) - new_token_ids[::-1].index(151668)
except ValueError:
end_think_idx = 0
thinking = tokenizer.decode(new_token_ids[:end_think_idx], skip_special_tokens=True).strip()
answer = tokenizer.decode(new_token_ids[end_think_idx:], skip_special_tokens=True).strip()
# Log thinking content for debugging (optional)
if thinking:
print("[Thinking] ", thinking)
return answer
# -------------------------------------------------
# Gradio UI
# -------------------------------------------------
chat_interface = gr.ChatInterface(
fn=generate_reply,
type="messages",
title="Qwen 3‑4B Thinking Chatbot",
description="Chat with Qwen3‑4B‑Thinking. The model may emit internal reasoning (shown in server logs).",
examples=[
["Give me a short introduction to large language models."],
["What are the benefits of using transformers?"],
["Explain the concept of attention in neural networks."],
],
)
if __name__ == "__main__":
chat_interface.launch() |