import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-4B-Instruct-2507" # Load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) @spaces.GPU(duration=120) def generate_response(prompt): # Prepare the model input messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=1024 # Reduced for performance and safety ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() content = tokenizer.decode(output_ids, skip_special_tokens=True) return content # Create Gradio interface with gr.Blocks() as demo: gr.Markdown("# Qwen Chatbot") chatbot = gr.Chatbot() msg = gr.Textbox(label="Input") clear = gr.Button("Clear") def respond(message, chat_history): if not message: return "", chat_history bot_response = generate_response(message) chat_history.append((message, bot_response)) return "", chat_history msg.submit(respond, [msg, chatbot], [msg, chatbot]) clear.click(lambda: None, None, chatbot, queue=False) # Launch the app demo.launch()