"""This script contains the image preprocessing code for Deep3DFaceRecon_pytorch """ import numpy as np from scipy.io import loadmat from PIL import Image import cv2 import os from skimage import transform as trans import torch import warnings warnings.filterwarnings("ignore", category=np.VisibleDeprecationWarning) warnings.filterwarnings("ignore", category=FutureWarning) # calculating least square problem for image alignment def POS(xp, x): npts = xp.shape[1] A = np.zeros([2*npts, 8]) A[0:2*npts-1:2, 0:3] = x.transpose() A[0:2*npts-1:2, 3] = 1 A[1:2*npts:2, 4:7] = x.transpose() A[1:2*npts:2, 7] = 1 b = np.reshape(xp.transpose(), [2*npts, 1]) k, _, _, _ = np.linalg.lstsq(A, b) R1 = k[0:3] R2 = k[4:7] sTx = k[3] sTy = k[7] s = (np.linalg.norm(R1) + np.linalg.norm(R2))/2 t = np.concatenate([sTx, sTy], axis=0) # bug return t, s # resize and crop images for face reconstruction def resize_n_crop_img(img, lm, t, s, target_size=224., mask=None): w0, h0 = img.size w = (w0*s).astype(np.int32) h = (h0*s).astype(np.int32) left = (w/2 - target_size/2 + float((t[0] - w0/2)*s)).astype(np.int32) right = left + target_size up = (h/2 - target_size/2 + float((h0/2 - t[1])*s)).astype(np.int32) below = up + target_size img = img.resize((w, h), resample=Image.BICUBIC) img = img.crop((left, up, right, below)) if mask is not None: mask = mask.resize((w, h), resample=Image.BICUBIC) mask = mask.crop((left, up, right, below)) lm = np.stack([lm[:, 0] - t[0] + w0/2, lm[:, 1] - t[1] + h0/2], axis=1)*s lm = lm - np.reshape( np.array([(w/2 - target_size/2), (h/2-target_size/2)]), [1, 2]) return img, lm, mask # utils for face reconstruction def extract_5p(lm): lm_idx = np.array([31, 37, 40, 43, 46, 49, 55]) - 1 lm5p = np.stack([lm[lm_idx[0], :], np.mean(lm[lm_idx[[1, 2]], :], 0), np.mean( lm[lm_idx[[3, 4]], :], 0), lm[lm_idx[5], :], lm[lm_idx[6], :]], axis=0) lm5p = lm5p[[1, 2, 0, 3, 4], :] return lm5p # utils for face reconstruction def align_img(img, lm, lm3D, mask=None, target_size=224., rescale_factor=102.): """ Return: transparams --numpy.array (raw_W, raw_H, scale, tx, ty) img_new --PIL.Image (target_size, target_size, 3) lm_new --numpy.array (68, 2), y direction is opposite to v direction mask_new --PIL.Image (target_size, target_size) Parameters: img --PIL.Image (raw_H, raw_W, 3) lm --numpy.array (68, 2), y direction is opposite to v direction lm3D --numpy.array (5, 3) mask --PIL.Image (raw_H, raw_W, 3) """ w0, h0 = img.size if lm.shape[0] != 5: lm5p = extract_5p(lm) else: lm5p = lm # calculate translation and scale factors using 5 facial landmarks and standard landmarks of a 3D face t, s = POS(lm5p.transpose(), lm3D.transpose()) s = rescale_factor/s # processing the image img_new, lm_new, mask_new = resize_n_crop_img(img, lm, t, s, target_size=target_size, mask=mask) trans_params = np.array([w0, h0, s, t[0], t[1]]) return trans_params, img_new, lm_new, mask_new