|
"""This script defines the visualizer for Deep3DFaceRecon_pytorch |
|
""" |
|
|
|
import numpy as np |
|
import os |
|
import sys |
|
import ntpath |
|
import time |
|
from . import util, html |
|
from subprocess import Popen, PIPE |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256): |
|
"""Save images to the disk. |
|
|
|
Parameters: |
|
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) |
|
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs |
|
image_path (str) -- the string is used to create image paths |
|
aspect_ratio (float) -- the aspect ratio of saved images |
|
width (int) -- the images will be resized to width x width |
|
|
|
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. |
|
""" |
|
image_dir = webpage.get_image_dir() |
|
short_path = ntpath.basename(image_path[0]) |
|
name = os.path.splitext(short_path)[0] |
|
|
|
webpage.add_header(name) |
|
ims, txts, links = [], [], [] |
|
|
|
for label, im_data in visuals.items(): |
|
im = util.tensor2im(im_data) |
|
image_name = '%s/%s.png' % (label, name) |
|
os.makedirs(os.path.join(image_dir, label), exist_ok=True) |
|
save_path = os.path.join(image_dir, image_name) |
|
util.save_image(im, save_path, aspect_ratio=aspect_ratio) |
|
ims.append(image_name) |
|
txts.append(label) |
|
links.append(image_name) |
|
webpage.add_images(ims, txts, links, width=width) |
|
|
|
|
|
class Visualizer(): |
|
"""This class includes several functions that can display/save images and print/save logging information. |
|
|
|
It uses a Python library tensprboardX for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. |
|
""" |
|
|
|
def __init__(self, opt): |
|
"""Initialize the Visualizer class |
|
|
|
Parameters: |
|
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
Step 1: Cache the training/test options |
|
Step 2: create a tensorboard writer |
|
Step 3: create an HTML object for saveing HTML filters |
|
Step 4: create a logging file to store training losses |
|
""" |
|
self.opt = opt |
|
self.use_html = opt.isTrain and not opt.no_html |
|
self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, 'logs', opt.name)) |
|
self.win_size = opt.display_winsize |
|
self.name = opt.name |
|
self.saved = False |
|
if self.use_html: |
|
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') |
|
self.img_dir = os.path.join(self.web_dir, 'images') |
|
print('create web directory %s...' % self.web_dir) |
|
util.mkdirs([self.web_dir, self.img_dir]) |
|
|
|
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') |
|
with open(self.log_name, "a") as log_file: |
|
now = time.strftime("%c") |
|
log_file.write('================ Training Loss (%s) ================\n' % now) |
|
|
|
def reset(self): |
|
"""Reset the self.saved status""" |
|
self.saved = False |
|
|
|
|
|
def display_current_results(self, visuals, total_iters, epoch, save_result): |
|
"""Display current results on tensorboad; save current results to an HTML file. |
|
|
|
Parameters: |
|
visuals (OrderedDict) - - dictionary of images to display or save |
|
total_iters (int) -- total iterations |
|
epoch (int) - - the current epoch |
|
save_result (bool) - - if save the current results to an HTML file |
|
""" |
|
for label, image in visuals.items(): |
|
self.writer.add_image(label, util.tensor2im(image), total_iters, dataformats='HWC') |
|
|
|
if self.use_html and (save_result or not self.saved): |
|
self.saved = True |
|
|
|
for label, image in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) |
|
util.save_image(image_numpy, img_path) |
|
|
|
|
|
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=0) |
|
for n in range(epoch, 0, -1): |
|
webpage.add_header('epoch [%d]' % n) |
|
ims, txts, links = [], [], [] |
|
|
|
for label, image_numpy in visuals.items(): |
|
image_numpy = util.tensor2im(image) |
|
img_path = 'epoch%.3d_%s.png' % (n, label) |
|
ims.append(img_path) |
|
txts.append(label) |
|
links.append(img_path) |
|
webpage.add_images(ims, txts, links, width=self.win_size) |
|
webpage.save() |
|
|
|
def plot_current_losses(self, total_iters, losses): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for name, value in losses.items(): |
|
self.writer.add_scalar(name, value, total_iters) |
|
|
|
|
|
def print_current_losses(self, epoch, iters, losses, t_comp, t_data): |
|
"""print current losses on console; also save the losses to the disk |
|
|
|
Parameters: |
|
epoch (int) -- current epoch |
|
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) |
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs |
|
t_comp (float) -- computational time per data point (normalized by batch_size) |
|
t_data (float) -- data loading time per data point (normalized by batch_size) |
|
""" |
|
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) |
|
for k, v in losses.items(): |
|
message += '%s: %.3f ' % (k, v) |
|
|
|
print(message) |
|
with open(self.log_name, "a") as log_file: |
|
log_file.write('%s\n' % message) |
|
|
|
|
|
class MyVisualizer: |
|
def __init__(self, opt): |
|
"""Initialize the Visualizer class |
|
|
|
Parameters: |
|
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions |
|
Step 1: Cache the training/test options |
|
Step 2: create a tensorboard writer |
|
Step 3: create an HTML object for saveing HTML filters |
|
Step 4: create a logging file to store training losses |
|
""" |
|
self.opt = opt |
|
self.name = opt.name |
|
self.img_dir = os.path.join(opt.checkpoints_dir, opt.name, 'results') |
|
|
|
if opt.phase != 'test': |
|
self.writer = SummaryWriter(os.path.join(opt.checkpoints_dir, opt.name, 'logs')) |
|
|
|
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') |
|
with open(self.log_name, "a") as log_file: |
|
now = time.strftime("%c") |
|
log_file.write('================ Training Loss (%s) ================\n' % now) |
|
|
|
|
|
def display_current_results(self, visuals, total_iters, epoch, dataset='train', save_results=False, count=0, name=None, |
|
add_image=True): |
|
"""Display current results on tensorboad; save current results to an HTML file. |
|
|
|
Parameters: |
|
visuals (OrderedDict) - - dictionary of images to display or save |
|
total_iters (int) -- total iterations |
|
epoch (int) - - the current epoch |
|
dataset (str) - - 'train' or 'val' or 'test' |
|
""" |
|
|
|
|
|
for label, image in visuals.items(): |
|
for i in range(image.shape[0]): |
|
image_numpy = util.tensor2im(image[i]) |
|
if add_image: |
|
self.writer.add_image(label + '%s_%02d'%(dataset, i + count), |
|
image_numpy, total_iters, dataformats='HWC') |
|
|
|
if save_results: |
|
save_path = os.path.join(self.img_dir, dataset, 'epoch_%s_%06d'%(epoch, total_iters)) |
|
if not os.path.isdir(save_path): |
|
os.makedirs(save_path) |
|
|
|
if name is not None: |
|
img_path = os.path.join(save_path, '%s.png' % name) |
|
else: |
|
img_path = os.path.join(save_path, '%s_%03d.png' % (label, i + count)) |
|
util.save_image(image_numpy, img_path) |
|
|
|
|
|
def plot_current_losses(self, total_iters, losses, dataset='train'): |
|
for name, value in losses.items(): |
|
self.writer.add_scalar(name + '/%s'%dataset, value, total_iters) |
|
|
|
|
|
def print_current_losses(self, epoch, iters, losses, t_comp, t_data, dataset='train'): |
|
"""print current losses on console; also save the losses to the disk |
|
|
|
Parameters: |
|
epoch (int) -- current epoch |
|
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) |
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs |
|
t_comp (float) -- computational time per data point (normalized by batch_size) |
|
t_data (float) -- data loading time per data point (normalized by batch_size) |
|
""" |
|
message = '(dataset: %s, epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % ( |
|
dataset, epoch, iters, t_comp, t_data) |
|
for k, v in losses.items(): |
|
message += '%s: %.3f ' % (k, v) |
|
|
|
print(message) |
|
with open(self.log_name, "a") as log_file: |
|
log_file.write('%s\n' % message) |
|
|