|
import cv2 |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
def calculate_points(heatmaps): |
|
|
|
B, N, H, W = heatmaps.shape |
|
HW = H * W |
|
BN_range = np.arange(B * N) |
|
|
|
heatline = heatmaps.reshape(B, N, HW) |
|
indexes = np.argmax(heatline, axis=2) |
|
|
|
preds = np.stack((indexes % W, indexes // W), axis=2) |
|
preds = preds.astype(np.float32, copy=False) |
|
|
|
inr = indexes.ravel() |
|
|
|
heatline = heatline.reshape(B * N, HW) |
|
x_up = heatline[BN_range, inr + 1] |
|
x_down = heatline[BN_range, inr - 1] |
|
|
|
|
|
if any((inr + W) >= 4096): |
|
y_up = heatline[BN_range, 4095] |
|
else: |
|
y_up = heatline[BN_range, inr + W] |
|
if any((inr - W) <= 0): |
|
y_down = heatline[BN_range, 0] |
|
else: |
|
y_down = heatline[BN_range, inr - W] |
|
|
|
think_diff = np.sign(np.stack((x_up - x_down, y_up - y_down), axis=1)) |
|
think_diff *= .25 |
|
|
|
preds += think_diff.reshape(B, N, 2) |
|
preds += .5 |
|
return preds |
|
|
|
|
|
class AddCoordsTh(nn.Module): |
|
|
|
def __init__(self, x_dim=64, y_dim=64, with_r=False, with_boundary=False): |
|
super(AddCoordsTh, self).__init__() |
|
self.x_dim = x_dim |
|
self.y_dim = y_dim |
|
self.with_r = with_r |
|
self.with_boundary = with_boundary |
|
|
|
def forward(self, input_tensor, heatmap=None): |
|
""" |
|
input_tensor: (batch, c, x_dim, y_dim) |
|
""" |
|
batch_size_tensor = input_tensor.shape[0] |
|
|
|
xx_ones = torch.ones([1, self.y_dim], dtype=torch.int32, device=input_tensor.device) |
|
xx_ones = xx_ones.unsqueeze(-1) |
|
|
|
xx_range = torch.arange(self.x_dim, dtype=torch.int32, device=input_tensor.device).unsqueeze(0) |
|
xx_range = xx_range.unsqueeze(1) |
|
|
|
xx_channel = torch.matmul(xx_ones.float(), xx_range.float()) |
|
xx_channel = xx_channel.unsqueeze(-1) |
|
|
|
yy_ones = torch.ones([1, self.x_dim], dtype=torch.int32, device=input_tensor.device) |
|
yy_ones = yy_ones.unsqueeze(1) |
|
|
|
yy_range = torch.arange(self.y_dim, dtype=torch.int32, device=input_tensor.device).unsqueeze(0) |
|
yy_range = yy_range.unsqueeze(-1) |
|
|
|
yy_channel = torch.matmul(yy_range.float(), yy_ones.float()) |
|
yy_channel = yy_channel.unsqueeze(-1) |
|
|
|
xx_channel = xx_channel.permute(0, 3, 2, 1) |
|
yy_channel = yy_channel.permute(0, 3, 2, 1) |
|
|
|
xx_channel = xx_channel / (self.x_dim - 1) |
|
yy_channel = yy_channel / (self.y_dim - 1) |
|
|
|
xx_channel = xx_channel * 2 - 1 |
|
yy_channel = yy_channel * 2 - 1 |
|
|
|
xx_channel = xx_channel.repeat(batch_size_tensor, 1, 1, 1) |
|
yy_channel = yy_channel.repeat(batch_size_tensor, 1, 1, 1) |
|
|
|
if self.with_boundary and heatmap is not None: |
|
boundary_channel = torch.clamp(heatmap[:, -1:, :, :], 0.0, 1.0) |
|
|
|
zero_tensor = torch.zeros_like(xx_channel) |
|
xx_boundary_channel = torch.where(boundary_channel > 0.05, xx_channel, zero_tensor) |
|
yy_boundary_channel = torch.where(boundary_channel > 0.05, yy_channel, zero_tensor) |
|
if self.with_boundary and heatmap is not None: |
|
xx_boundary_channel = xx_boundary_channel.to(input_tensor.device) |
|
yy_boundary_channel = yy_boundary_channel.to(input_tensor.device) |
|
ret = torch.cat([input_tensor, xx_channel, yy_channel], dim=1) |
|
|
|
if self.with_r: |
|
rr = torch.sqrt(torch.pow(xx_channel, 2) + torch.pow(yy_channel, 2)) |
|
rr = rr / torch.max(rr) |
|
ret = torch.cat([ret, rr], dim=1) |
|
|
|
if self.with_boundary and heatmap is not None: |
|
ret = torch.cat([ret, xx_boundary_channel, yy_boundary_channel], dim=1) |
|
return ret |
|
|
|
|
|
class CoordConvTh(nn.Module): |
|
"""CoordConv layer as in the paper.""" |
|
|
|
def __init__(self, x_dim, y_dim, with_r, with_boundary, in_channels, first_one=False, *args, **kwargs): |
|
super(CoordConvTh, self).__init__() |
|
self.addcoords = AddCoordsTh(x_dim=x_dim, y_dim=y_dim, with_r=with_r, with_boundary=with_boundary) |
|
in_channels += 2 |
|
if with_r: |
|
in_channels += 1 |
|
if with_boundary and not first_one: |
|
in_channels += 2 |
|
self.conv = nn.Conv2d(in_channels=in_channels, *args, **kwargs) |
|
|
|
def forward(self, input_tensor, heatmap=None): |
|
ret = self.addcoords(input_tensor, heatmap) |
|
last_channel = ret[:, -2:, :, :] |
|
ret = self.conv(ret) |
|
return ret, last_channel |
|
|
|
|
|
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False, dilation=1): |
|
'3x3 convolution with padding' |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=strd, padding=padding, bias=bias, dilation=dilation) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = conv3x3(inplanes, planes, stride) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.conv2 = conv3x3(planes, planes) |
|
|
|
self.downsample = downsample |
|
self.stride = stride |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out = self.conv1(x) |
|
out = self.relu(out) |
|
|
|
out = self.conv2(out) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(x) |
|
|
|
out += residual |
|
out = self.relu(out) |
|
|
|
return out |
|
|
|
|
|
class ConvBlock(nn.Module): |
|
|
|
def __init__(self, in_planes, out_planes): |
|
super(ConvBlock, self).__init__() |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv1 = conv3x3(in_planes, int(out_planes / 2)) |
|
self.bn2 = nn.BatchNorm2d(int(out_planes / 2)) |
|
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4), padding=1, dilation=1) |
|
self.bn3 = nn.BatchNorm2d(int(out_planes / 4)) |
|
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4), padding=1, dilation=1) |
|
|
|
if in_planes != out_planes: |
|
self.downsample = nn.Sequential( |
|
nn.BatchNorm2d(in_planes), |
|
nn.ReLU(True), |
|
nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, bias=False), |
|
) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x): |
|
residual = x |
|
|
|
out1 = self.bn1(x) |
|
out1 = F.relu(out1, True) |
|
out1 = self.conv1(out1) |
|
|
|
out2 = self.bn2(out1) |
|
out2 = F.relu(out2, True) |
|
out2 = self.conv2(out2) |
|
|
|
out3 = self.bn3(out2) |
|
out3 = F.relu(out3, True) |
|
out3 = self.conv3(out3) |
|
|
|
out3 = torch.cat((out1, out2, out3), 1) |
|
|
|
if self.downsample is not None: |
|
residual = self.downsample(residual) |
|
|
|
out3 += residual |
|
|
|
return out3 |
|
|
|
|
|
class HourGlass(nn.Module): |
|
|
|
def __init__(self, num_modules, depth, num_features, first_one=False): |
|
super(HourGlass, self).__init__() |
|
self.num_modules = num_modules |
|
self.depth = depth |
|
self.features = num_features |
|
self.coordconv = CoordConvTh( |
|
x_dim=64, |
|
y_dim=64, |
|
with_r=True, |
|
with_boundary=True, |
|
in_channels=256, |
|
first_one=first_one, |
|
out_channels=256, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self._generate_network(self.depth) |
|
|
|
def _generate_network(self, level): |
|
self.add_module('b1_' + str(level), ConvBlock(256, 256)) |
|
|
|
self.add_module('b2_' + str(level), ConvBlock(256, 256)) |
|
|
|
if level > 1: |
|
self._generate_network(level - 1) |
|
else: |
|
self.add_module('b2_plus_' + str(level), ConvBlock(256, 256)) |
|
|
|
self.add_module('b3_' + str(level), ConvBlock(256, 256)) |
|
|
|
def _forward(self, level, inp): |
|
|
|
up1 = inp |
|
up1 = self._modules['b1_' + str(level)](up1) |
|
|
|
|
|
low1 = F.avg_pool2d(inp, 2, stride=2) |
|
low1 = self._modules['b2_' + str(level)](low1) |
|
|
|
if level > 1: |
|
low2 = self._forward(level - 1, low1) |
|
else: |
|
low2 = low1 |
|
low2 = self._modules['b2_plus_' + str(level)](low2) |
|
|
|
low3 = low2 |
|
low3 = self._modules['b3_' + str(level)](low3) |
|
|
|
up2 = F.interpolate(low3, scale_factor=2, mode='nearest') |
|
|
|
return up1 + up2 |
|
|
|
def forward(self, x, heatmap): |
|
x, last_channel = self.coordconv(x, heatmap) |
|
return self._forward(self.depth, x), last_channel |
|
|
|
|
|
class FAN(nn.Module): |
|
|
|
def __init__(self, num_modules=1, end_relu=False, gray_scale=False, num_landmarks=68, device='cuda'): |
|
super(FAN, self).__init__() |
|
self.device = device |
|
self.num_modules = num_modules |
|
self.gray_scale = gray_scale |
|
self.end_relu = end_relu |
|
self.num_landmarks = num_landmarks |
|
|
|
|
|
if self.gray_scale: |
|
self.conv1 = CoordConvTh( |
|
x_dim=256, |
|
y_dim=256, |
|
with_r=True, |
|
with_boundary=False, |
|
in_channels=3, |
|
out_channels=64, |
|
kernel_size=7, |
|
stride=2, |
|
padding=3) |
|
else: |
|
self.conv1 = CoordConvTh( |
|
x_dim=256, |
|
y_dim=256, |
|
with_r=True, |
|
with_boundary=False, |
|
in_channels=3, |
|
out_channels=64, |
|
kernel_size=7, |
|
stride=2, |
|
padding=3) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.conv2 = ConvBlock(64, 128) |
|
self.conv3 = ConvBlock(128, 128) |
|
self.conv4 = ConvBlock(128, 256) |
|
|
|
|
|
for hg_module in range(self.num_modules): |
|
if hg_module == 0: |
|
first_one = True |
|
else: |
|
first_one = False |
|
self.add_module('m' + str(hg_module), HourGlass(1, 4, 256, first_one)) |
|
self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256)) |
|
self.add_module('conv_last' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) |
|
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256)) |
|
self.add_module('l' + str(hg_module), nn.Conv2d(256, num_landmarks + 1, kernel_size=1, stride=1, padding=0)) |
|
|
|
if hg_module < self.num_modules - 1: |
|
self.add_module('bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0)) |
|
self.add_module('al' + str(hg_module), |
|
nn.Conv2d(num_landmarks + 1, 256, kernel_size=1, stride=1, padding=0)) |
|
|
|
def forward(self, x): |
|
x, _ = self.conv1(x) |
|
x = F.relu(self.bn1(x), True) |
|
|
|
x = F.avg_pool2d(self.conv2(x), 2, stride=2) |
|
x = self.conv3(x) |
|
x = self.conv4(x) |
|
|
|
previous = x |
|
|
|
outputs = [] |
|
boundary_channels = [] |
|
tmp_out = None |
|
for i in range(self.num_modules): |
|
hg, boundary_channel = self._modules['m' + str(i)](previous, tmp_out) |
|
|
|
ll = hg |
|
ll = self._modules['top_m_' + str(i)](ll) |
|
|
|
ll = F.relu(self._modules['bn_end' + str(i)](self._modules['conv_last' + str(i)](ll)), True) |
|
|
|
|
|
tmp_out = self._modules['l' + str(i)](ll) |
|
if self.end_relu: |
|
tmp_out = F.relu(tmp_out) |
|
outputs.append(tmp_out) |
|
boundary_channels.append(boundary_channel) |
|
|
|
if i < self.num_modules - 1: |
|
ll = self._modules['bl' + str(i)](ll) |
|
tmp_out_ = self._modules['al' + str(i)](tmp_out) |
|
previous = previous + ll + tmp_out_ |
|
|
|
return outputs, boundary_channels |
|
|
|
def get_landmarks(self, img): |
|
H, W, _ = img.shape |
|
offset = W / 64, H / 64, 0, 0 |
|
|
|
img = cv2.resize(img, (256, 256)) |
|
inp = img[..., ::-1] |
|
inp = torch.from_numpy(np.ascontiguousarray(inp.transpose((2, 0, 1)))).float() |
|
inp = inp.to(self.device) |
|
inp.div_(255.0).unsqueeze_(0) |
|
|
|
outputs, _ = self.forward(inp) |
|
out = outputs[-1][:, :-1, :, :] |
|
heatmaps = out.detach().cpu().numpy() |
|
|
|
pred = calculate_points(heatmaps).reshape(-1, 2) |
|
|
|
pred *= offset[:2] |
|
pred += offset[-2:] |
|
|
|
return pred |
|
|