|
import os |
|
import cv2 |
|
import numpy as np |
|
from scipy.io import loadmat |
|
import tensorflow as tf |
|
from util.preprocess import align_for_lm |
|
from shutil import move |
|
|
|
mean_face = np.loadtxt('util/test_mean_face.txt') |
|
mean_face = mean_face.reshape([68, 2]) |
|
|
|
def save_label(labels, save_path): |
|
np.savetxt(save_path, labels) |
|
|
|
def draw_landmarks(img, landmark, save_name): |
|
landmark = landmark |
|
lm_img = np.zeros([img.shape[0], img.shape[1], 3]) |
|
lm_img[:] = img.astype(np.float32) |
|
landmark = np.round(landmark).astype(np.int32) |
|
|
|
for i in range(len(landmark)): |
|
for j in range(-1, 1): |
|
for k in range(-1, 1): |
|
if img.shape[0] - 1 - landmark[i, 1]+j > 0 and \ |
|
img.shape[0] - 1 - landmark[i, 1]+j < img.shape[0] and \ |
|
landmark[i, 0]+k > 0 and \ |
|
landmark[i, 0]+k < img.shape[1]: |
|
lm_img[img.shape[0] - 1 - landmark[i, 1]+j, landmark[i, 0]+k, |
|
:] = np.array([0, 0, 255]) |
|
lm_img = lm_img.astype(np.uint8) |
|
|
|
cv2.imwrite(save_name, lm_img) |
|
|
|
|
|
def load_data(img_name, txt_name): |
|
return cv2.imread(img_name), np.loadtxt(txt_name) |
|
|
|
|
|
def load_lm_graph(graph_filename): |
|
with tf.gfile.GFile(graph_filename, 'rb') as f: |
|
graph_def = tf.GraphDef() |
|
graph_def.ParseFromString(f.read()) |
|
|
|
with tf.Graph().as_default() as graph: |
|
tf.import_graph_def(graph_def, name='net') |
|
img_224 = graph.get_tensor_by_name('net/input_imgs:0') |
|
output_lm = graph.get_tensor_by_name('net/lm:0') |
|
lm_sess = tf.Session(graph=graph) |
|
|
|
return lm_sess,img_224,output_lm |
|
|
|
|
|
def detect_68p(img_path,sess,input_op,output_op): |
|
print('detecting landmarks......') |
|
names = [i for i in sorted(os.listdir( |
|
img_path)) if 'jpg' in i or 'png' in i or 'jpeg' in i or 'PNG' in i] |
|
vis_path = os.path.join(img_path, 'vis') |
|
remove_path = os.path.join(img_path, 'remove') |
|
save_path = os.path.join(img_path, 'landmarks') |
|
if not os.path.isdir(vis_path): |
|
os.makedirs(vis_path) |
|
if not os.path.isdir(remove_path): |
|
os.makedirs(remove_path) |
|
if not os.path.isdir(save_path): |
|
os.makedirs(save_path) |
|
|
|
for i in range(0, len(names)): |
|
name = names[i] |
|
print('%05d' % (i), ' ', name) |
|
full_image_name = os.path.join(img_path, name) |
|
txt_name = '.'.join(name.split('.')[:-1]) + '.txt' |
|
full_txt_name = os.path.join(img_path, 'detections', txt_name) |
|
|
|
|
|
if not os.path.isfile(full_txt_name): |
|
move(full_image_name, os.path.join(remove_path, name)) |
|
continue |
|
|
|
|
|
img, five_points = load_data(full_image_name, full_txt_name) |
|
input_img, scale, bbox = align_for_lm(img, five_points) |
|
|
|
|
|
if scale == 0: |
|
move(full_txt_name, os.path.join( |
|
remove_path, txt_name)) |
|
move(full_image_name, os.path.join(remove_path, name)) |
|
continue |
|
|
|
|
|
input_img = np.reshape( |
|
input_img, [1, 224, 224, 3]).astype(np.float32) |
|
landmark = sess.run( |
|
output_op, feed_dict={input_op: input_img}) |
|
|
|
|
|
landmark = landmark.reshape([68, 2]) + mean_face |
|
landmark[:, 1] = 223 - landmark[:, 1] |
|
landmark = landmark / scale |
|
landmark[:, 0] = landmark[:, 0] + bbox[0] |
|
landmark[:, 1] = landmark[:, 1] + bbox[1] |
|
landmark[:, 1] = img.shape[0] - 1 - landmark[:, 1] |
|
|
|
if i % 100 == 0: |
|
draw_landmarks(img, landmark, os.path.join(vis_path, name)) |
|
save_label(landmark, os.path.join(save_path, txt_name)) |
|
|