Spaces:
Running
Running
Commit
·
b820bc7
1
Parent(s):
45c882e
'lll'
Browse files
app.py
CHANGED
@@ -27,37 +27,66 @@ def load_model(hf_token):
|
|
27 |
return "⚠️ Please enter your Hugging Face token to use the model."
|
28 |
|
29 |
try:
|
30 |
-
# Try
|
31 |
model_options = [
|
32 |
-
"google/gemma-
|
33 |
-
"google/gemma-2b",
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
]
|
35 |
|
|
|
|
|
36 |
# Try to load models in order until one works
|
37 |
for model_name in model_options:
|
38 |
try:
|
39 |
print(f"Attempting to load model: {model_name}")
|
40 |
|
41 |
# Load tokenizer
|
|
|
42 |
global_tokenizer = AutoTokenizer.from_pretrained(
|
43 |
model_name,
|
44 |
token=hf_token
|
45 |
)
|
|
|
46 |
|
47 |
-
# Load model with minimal configuration
|
|
|
48 |
global_model = AutoModelForCausalLM.from_pretrained(
|
49 |
model_name,
|
50 |
torch_dtype=torch.float16,
|
51 |
device_map="auto",
|
52 |
token=hf_token
|
53 |
)
|
|
|
54 |
|
55 |
model_loaded = True
|
56 |
return f"✅ Model {model_name} loaded successfully!"
|
57 |
except Exception as specific_e:
|
58 |
print(f"Failed to load {model_name}: {specific_e}")
|
|
|
|
|
59 |
continue
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
# If we get here, all model options failed
|
62 |
model_loaded = False
|
63 |
return "❌ Could not load any model version. Please check your token and try again."
|
@@ -65,6 +94,10 @@ def load_model(hf_token):
|
|
65 |
except Exception as e:
|
66 |
model_loaded = False
|
67 |
error_msg = str(e)
|
|
|
|
|
|
|
|
|
68 |
if "401 Client Error" in error_msg:
|
69 |
return "❌ Authentication failed. Please check your token and make sure you've accepted the model license on Hugging Face."
|
70 |
else:
|
@@ -152,7 +185,11 @@ def generate_text(prompt, max_length=1024, temperature=0.7, top_p=0.95):
|
|
152 |
"""Generate text using the Gemma model"""
|
153 |
global global_model, global_tokenizer, model_loaded
|
154 |
|
|
|
|
|
|
|
155 |
if not model_loaded or global_model is None or global_tokenizer is None:
|
|
|
156 |
return "⚠️ Model not loaded. Please authenticate with your Hugging Face token."
|
157 |
|
158 |
if not prompt:
|
@@ -161,21 +198,35 @@ def generate_text(prompt, max_length=1024, temperature=0.7, top_p=0.95):
|
|
161 |
try:
|
162 |
# Keep generation simple to avoid errors
|
163 |
inputs = global_tokenizer(prompt, return_tensors="pt").to(global_model.device)
|
|
|
164 |
|
165 |
-
# Use simpler generation parameters
|
166 |
-
|
167 |
-
inputs.input_ids,
|
168 |
-
max_length
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
# Decode and return the generated text
|
174 |
generated_text = global_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
175 |
return generated_text
|
176 |
except Exception as e:
|
177 |
error_msg = str(e)
|
178 |
print(f"Generation error: {error_msg}")
|
|
|
|
|
|
|
|
|
179 |
if "probability tensor" in error_msg:
|
180 |
return "Error: There was a problem with the generation parameters. Try using simpler parameters or a different prompt."
|
181 |
else:
|
@@ -234,11 +285,9 @@ with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as demo:
|
|
234 |
with gr.Column(scale=1):
|
235 |
auth_button = gr.Button("Authenticate", variant="primary")
|
236 |
|
237 |
-
|
238 |
-
auth_status = gr.Markdown("Please authenticate to use the model.")
|
239 |
|
240 |
def authenticate(token):
|
241 |
-
auth_message_group.visible = True
|
242 |
return "Loading model... Please wait, this may take a minute."
|
243 |
|
244 |
def auth_complete(token):
|
|
|
27 |
return "⚠️ Please enter your Hugging Face token to use the model."
|
28 |
|
29 |
try:
|
30 |
+
# Try different model versions from smallest to largest
|
31 |
model_options = [
|
32 |
+
"google/gemma-2b-it", # Try an instruction-tuned 2B model first (smallest)
|
33 |
+
"google/gemma-2b", # Try base 2B model next
|
34 |
+
"google/gemma-7b-it", # Try 7B instruction-tuned model
|
35 |
+
"google/gemma-7b", # Try base 7B model
|
36 |
+
# Fallback to completely different models if all Gemma models fail
|
37 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
38 |
+
"facebook/opt-1.3b",
|
39 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
40 |
]
|
41 |
|
42 |
+
print(f"Attempting to load models with token starting with: {hf_token[:5]}...")
|
43 |
+
|
44 |
# Try to load models in order until one works
|
45 |
for model_name in model_options:
|
46 |
try:
|
47 |
print(f"Attempting to load model: {model_name}")
|
48 |
|
49 |
# Load tokenizer
|
50 |
+
print("Loading tokenizer...")
|
51 |
global_tokenizer = AutoTokenizer.from_pretrained(
|
52 |
model_name,
|
53 |
token=hf_token
|
54 |
)
|
55 |
+
print("Tokenizer loaded successfully")
|
56 |
|
57 |
+
# Load model with minimal configuration
|
58 |
+
print(f"Loading model {model_name}...")
|
59 |
global_model = AutoModelForCausalLM.from_pretrained(
|
60 |
model_name,
|
61 |
torch_dtype=torch.float16,
|
62 |
device_map="auto",
|
63 |
token=hf_token
|
64 |
)
|
65 |
+
print(f"Model {model_name} loaded successfully!")
|
66 |
|
67 |
model_loaded = True
|
68 |
return f"✅ Model {model_name} loaded successfully!"
|
69 |
except Exception as specific_e:
|
70 |
print(f"Failed to load {model_name}: {specific_e}")
|
71 |
+
import traceback
|
72 |
+
traceback.print_exc()
|
73 |
continue
|
74 |
|
75 |
+
# If we get here, all model options failed - try one more option with no token
|
76 |
+
try:
|
77 |
+
print("Trying a public model with no token requirement...")
|
78 |
+
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
79 |
+
global_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
80 |
+
global_model = AutoModelForCausalLM.from_pretrained(
|
81 |
+
model_name,
|
82 |
+
torch_dtype=torch.float16,
|
83 |
+
device_map="auto"
|
84 |
+
)
|
85 |
+
model_loaded = True
|
86 |
+
return f"✅ Fallback model {model_name} loaded successfully! Note: This is not Gemma but a fallback model."
|
87 |
+
except Exception as fallback_e:
|
88 |
+
print(f"Failed to load fallback model: {fallback_e}")
|
89 |
+
|
90 |
# If we get here, all model options failed
|
91 |
model_loaded = False
|
92 |
return "❌ Could not load any model version. Please check your token and try again."
|
|
|
94 |
except Exception as e:
|
95 |
model_loaded = False
|
96 |
error_msg = str(e)
|
97 |
+
print(f"Error in load_model: {error_msg}")
|
98 |
+
import traceback
|
99 |
+
traceback.print_exc()
|
100 |
+
|
101 |
if "401 Client Error" in error_msg:
|
102 |
return "❌ Authentication failed. Please check your token and make sure you've accepted the model license on Hugging Face."
|
103 |
else:
|
|
|
185 |
"""Generate text using the Gemma model"""
|
186 |
global global_model, global_tokenizer, model_loaded
|
187 |
|
188 |
+
print(f"Generating text with params: max_length={max_length}, temp={temperature}, top_p={top_p}")
|
189 |
+
print(f"Prompt: {prompt[:100]}...")
|
190 |
+
|
191 |
if not model_loaded or global_model is None or global_tokenizer is None:
|
192 |
+
print("Model not loaded")
|
193 |
return "⚠️ Model not loaded. Please authenticate with your Hugging Face token."
|
194 |
|
195 |
if not prompt:
|
|
|
198 |
try:
|
199 |
# Keep generation simple to avoid errors
|
200 |
inputs = global_tokenizer(prompt, return_tensors="pt").to(global_model.device)
|
201 |
+
print(f"Input token length: {len(inputs.input_ids[0])}")
|
202 |
|
203 |
+
# Use even simpler generation parameters
|
204 |
+
generation_args = {
|
205 |
+
"input_ids": inputs.input_ids,
|
206 |
+
"max_length": min(2048, max_length + len(inputs.input_ids[0])),
|
207 |
+
"do_sample": True,
|
208 |
+
}
|
209 |
+
|
210 |
+
# Only add temperature if not too low (can cause issues)
|
211 |
+
if temperature >= 0.3:
|
212 |
+
generation_args["temperature"] = temperature
|
213 |
+
|
214 |
+
print(f"Generation args: {generation_args}")
|
215 |
+
|
216 |
+
# Generate text
|
217 |
+
outputs = global_model.generate(**generation_args)
|
218 |
|
219 |
# Decode and return the generated text
|
220 |
generated_text = global_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
221 |
+
print(f"Generated text length: {len(generated_text)}")
|
222 |
return generated_text
|
223 |
except Exception as e:
|
224 |
error_msg = str(e)
|
225 |
print(f"Generation error: {error_msg}")
|
226 |
+
print(f"Error type: {type(e)}")
|
227 |
+
import traceback
|
228 |
+
traceback.print_exc()
|
229 |
+
|
230 |
if "probability tensor" in error_msg:
|
231 |
return "Error: There was a problem with the generation parameters. Try using simpler parameters or a different prompt."
|
232 |
else:
|
|
|
285 |
with gr.Column(scale=1):
|
286 |
auth_button = gr.Button("Authenticate", variant="primary")
|
287 |
|
288 |
+
auth_status = gr.Markdown("Please authenticate to use the model.")
|
|
|
289 |
|
290 |
def authenticate(token):
|
|
|
291 |
return "Loading model... Please wait, this may take a minute."
|
292 |
|
293 |
def auth_complete(token):
|