import gradio as gr from huggingface_hub import hf_hub_download from llama_cpp import Llama # Download the Q3_K_M quantized GGUF from Unslo​th’s repo model_path = hf_hub_download( repo_id="unsloth/Llama-3.2-1B-Instruct-GGUF", filename="Llama-3.2-1B-Instruct-Q3_K_M.gguf" ) llm = Llama(model_path=model_path) def generate(prompt: str, temperature: float = 0.7, max_tokens: int = 128): out = llm(prompt, temperature=temperature, max_tokens=max_tokens) return out["choices"][0]["text"] iface = gr.Interface( fn=generate, inputs=[ gr.Textbox(lines=4, label="Prompt"), gr.Slider(0.0, 1.0, 0.1, label="Temperature", value=0.7), gr.Slider(16, 512, 16, label="Max Tokens", value=128), ], outputs="text", title="unsloth Llama-3.2-1B (Q3_K_M, CPU)" ) if __name__ == "__main__": iface.launch(server_name="0.0.0.0", server_port=7860)