Spaces:
Sleeping
Sleeping
File size: 7,052 Bytes
04e4114 4002837 04e4114 5fb856a 04e4114 4002837 04e4114 4002837 04e4114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import re
import PyPDF2
from langchain_community.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.chat_models import ChatOllama
from langchain_groq import ChatGroq
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
import chainlit as cl
from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer
import logging
import pypandoc
import pdfkit
from paddleocr import PaddleOCR
import fitz
import asyncio
from langchain_nomic.embeddings import NomicEmbeddings
llm_groq = ChatGroq(
model_name='llama3-70b-8192'
)
# Initialize anonymizer
anonymizer = PresidioReversibleAnonymizer(analyzed_fields=['PERSON', 'EMAIL_ADDRESS', 'PHONE_NUMBER', 'IBAN_CODE', 'CREDIT_CARD', 'CRYPTO', 'IP_ADDRESS', 'LOCATION', 'DATE_TIME', 'NRP', 'MEDICAL_LICENSE', 'URL', 'US_BANK_NUMBER', 'US_DRIVER_LICENSE', 'US_ITIN', 'US_PASSPORT', 'US_SSN'], faker_seed=18)
def extract_text_from_pdf(file_path):
pdf = PyPDF2.PdfReader(file_path)
pdf_text = ""
for page in pdf.pages:
pdf_text += page.extract_text()
return pdf_text
def has_sufficient_selectable_text(page, threshold=50):
text = page.extract_text()
if len(text.strip()) > threshold:
return True
return False
async def get_text(file_path):
text = ""
try:
logging.info("Starting OCR process for file: %s", file_path)
extension = file_path.split(".")[-1].lower()
allowed_extension = ["jpg", "jpeg", "png", "pdf", "docx"]
if extension not in allowed_extension:
error = "Not a valid File. Allowed Format are jpg, jpeg, png, pdf, docx"
logging.error(error)
return {"error": error}
if extension == "docx":
file_path = convert_docx_to_pdf(file_path)
ocr = PaddleOCR(use_angle_cls=True, lang='en')
result = ocr.ocr(file_path, cls=True)
for idx in range(len(result)):
res = result[idx]
for line in res:
text += line[1][0] + " "
logging.info("OCR process completed successfully for file: %s", file_path)
except Exception as e:
logging.error("Error occurred during OCR process for file %s: %s", file_path, e)
text = "Error occurred during OCR process."
logging.info("Extracted text: %s", text)
return text
def convert_docx_to_pdf(input_path):
html_path = input_path.replace('.docx', '.html')
output_path = ".".join(input_path.split(".")[:-1]) + ".pdf"
pypandoc.convert_file(input_path, 'html', outputfile=html_path)
pdfkit.from_file(html_path, output_path)
logging.info("DOCX Format Handled")
return output_path
async def extract_text_from_mixed_pdf(file_path):
pdf = PyPDF2.PdfReader(file_path)
ocr = PaddleOCR(use_angle_cls=True, lang='en')
pdf_text = ""
for i, page in enumerate(pdf.pages):
text = page.extract_text()
if not has_sufficient_selectable_text(page):
logging.info(f"Page {i+1} has insufficient selectable text, performing OCR.")
pdf_document = fitz.open(file_path)
pdf_page = pdf_document.load_page(i)
pix = pdf_page.get_pixmap()
image_path = f"page_{i+1}.png"
pix.save(image_path)
result = ocr.ocr(image_path, cls=True)
for idx in range(len(result)):
res = result[idx]
for line in res:
text += line[1][0] + " "
pdf_text += text
return pdf_text
@cl.on_chat_start
async def on_chat_start():
files = None # Initialize variable to store uploaded files
# Wait for the user to upload a file
while files is None:
files = await cl.AskFileMessage(
content="Please upload a pdf file to begin!",
# accept=["application/pdf"],
accept=["application/pdf", "image/jpeg", "image/png", "application/vnd.openxmlformats-officedocument.wordprocessingml.document"],
max_size_mb=100,
timeout=180,
).send()
file = files[0] # Get the first uploaded file
# Inform the user that processing has started
msg = cl.Message(content=f"Processing `{file.name}`...")
await msg.send()
# Extract text from PDF, checking for selectable and handwritten text
if file.name.endswith('.pdf'):
pdf_text = await extract_text_from_mixed_pdf(file.path)
else:
pdf_text = await get_text(file.path)
# Anonymize the text
anonymized_text = anonymizer.anonymize(
pdf_text
)
# with splitting into chunks
# {
# # Split the sanitized text into chunks
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
# texts = text_splitter.split_text(anonymized_text)
# # Create metadata for each chunk
# metadatas = [{"source": f"{i}-pl"} for i in range(len(texts))]
# # Create a Chroma vector store
# embeddings = OllamaEmbeddings(model="nomic-embed-text")
# docsearch = await cl.make_async(Chroma.from_texts)(
# texts, embeddings, metadatas=metadatas
# )
# }
# without splitting into chunks
# {
# Create a Chroma vector store
# embeddings = OllamaEmbeddings(model="nomic-embed-text")
embeddings = NomicEmbeddings(model="nomic-embed-text-v1.5")
docsearch = await cl.make_async(Chroma.from_texts)(
[anonymized_text], embeddings, metadatas=[{"source": "0-pl"}]
)
# }
# Initialize message history for conversation
message_history = ChatMessageHistory()
# Memory for conversational context
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Chroma vector store
chain = ConversationalRetrievalChain.from_llm(
llm = llm_groq,
chain_type="stuff",
retriever=docsearch.as_retriever(),
memory=memory,
return_source_documents=True,
)
# Let the user know that the system is ready
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
# Store the chain in user session
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
# Retrieve the chain from user session
chain = cl.user_session.get("chain")
# Callbacks happen asynchronously/parallel
cb = cl.AsyncLangchainCallbackHandler()
# Call the chain with user's message content
res = await chain.ainvoke(message.content, callbacks=[cb])
answer = anonymizer.deanonymize(
"ok"+res["answer"]
)
text_elements = []
# Return results
await cl.Message(content=answer, elements=text_elements).send()
|