Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,12 +5,53 @@ import time
|
|
| 5 |
import os
|
| 6 |
import spaces
|
| 7 |
import torch
|
|
|
|
|
|
|
| 8 |
|
| 9 |
zero = torch.Tensor([0]).cuda()
|
| 10 |
print(zero.device) # <-- 'cpu' π€
|
| 11 |
|
| 12 |
names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed']
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
@spaces.GPU
|
| 15 |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
| 16 |
print(zero.device) # <-- 'cuda:0' π€
|
|
@@ -18,7 +59,6 @@ def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
|
| 18 |
|
| 19 |
payload = {"input": {}}
|
| 20 |
|
| 21 |
-
|
| 22 |
base_url = "http://0.0.0.0:7860"
|
| 23 |
for i, key in enumerate(names):
|
| 24 |
value = args[i]
|
|
@@ -29,7 +69,6 @@ def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
|
| 29 |
|
| 30 |
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
|
| 31 |
|
| 32 |
-
|
| 33 |
if response.status_code == 201:
|
| 34 |
follow_up_url = response.json()["urls"]["get"]
|
| 35 |
response = requests.get(follow_up_url, headers=headers)
|
|
@@ -132,4 +171,7 @@ with gr.Blocks(css=css) as app:
|
|
| 132 |
show_api = False
|
| 133 |
)
|
| 134 |
|
|
|
|
|
|
|
|
|
|
| 135 |
app.queue(max_size=12, api_open=False).launch(share=False, show_api=False)
|
|
|
|
| 5 |
import os
|
| 6 |
import spaces
|
| 7 |
import torch
|
| 8 |
+
import subprocess
|
| 9 |
+
import signal
|
| 10 |
|
| 11 |
zero = torch.Tensor([0]).cuda()
|
| 12 |
print(zero.device) # <-- 'cpu' π€
|
| 13 |
|
| 14 |
names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed']
|
| 15 |
|
| 16 |
+
def check_cog_server():
|
| 17 |
+
try:
|
| 18 |
+
# Start the Cog server in the background
|
| 19 |
+
cog_process = subprocess.Popen(["python3", "-m", "cog.server.http", "--threads=10"], cwd="/src")
|
| 20 |
+
|
| 21 |
+
# Wait for the Cog server to start on port 5000
|
| 22 |
+
counter1 = 0
|
| 23 |
+
while True:
|
| 24 |
+
try:
|
| 25 |
+
requests.get("http://localhost:5000")
|
| 26 |
+
print("Cog server is running on port 5000.")
|
| 27 |
+
break
|
| 28 |
+
except requests.exceptions.ConnectionError:
|
| 29 |
+
print("Waiting for Cog server to start on port 5000...")
|
| 30 |
+
time.sleep(5)
|
| 31 |
+
counter1 += 1
|
| 32 |
+
if counter1 >= 250:
|
| 33 |
+
raise Exception("Error: Cog server did not start on port 5000 after 250 attempts.")
|
| 34 |
+
|
| 35 |
+
# Wait for the Cog server to be fully ready
|
| 36 |
+
counter2 = 0
|
| 37 |
+
while True:
|
| 38 |
+
response = requests.get("http://localhost:5000/health-check")
|
| 39 |
+
status = response.json().get("status")
|
| 40 |
+
if status == "READY":
|
| 41 |
+
print("Cog server is fully ready.")
|
| 42 |
+
break
|
| 43 |
+
else:
|
| 44 |
+
print("Waiting for Cog server (models loading) on port 5000...")
|
| 45 |
+
time.sleep(5)
|
| 46 |
+
counter2 += 1
|
| 47 |
+
if counter2 >= 250:
|
| 48 |
+
raise Exception("Error: Cog server did not become fully ready after 250 attempts.")
|
| 49 |
+
|
| 50 |
+
except Exception as e:
|
| 51 |
+
print(f"Error: {str(e)}")
|
| 52 |
+
cog_process.send_signal(signal.SIGINT) # Send interrupt signal to the Cog process
|
| 53 |
+
raise e
|
| 54 |
+
|
| 55 |
@spaces.GPU
|
| 56 |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)):
|
| 57 |
print(zero.device) # <-- 'cuda:0' π€
|
|
|
|
| 59 |
|
| 60 |
payload = {"input": {}}
|
| 61 |
|
|
|
|
| 62 |
base_url = "http://0.0.0.0:7860"
|
| 63 |
for i, key in enumerate(names):
|
| 64 |
value = args[i]
|
|
|
|
| 69 |
|
| 70 |
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload)
|
| 71 |
|
|
|
|
| 72 |
if response.status_code == 201:
|
| 73 |
follow_up_url = response.json()["urls"]["get"]
|
| 74 |
response = requests.get(follow_up_url, headers=headers)
|
|
|
|
| 171 |
show_api = False
|
| 172 |
)
|
| 173 |
|
| 174 |
+
# Check the Cog server's readiness before launching the Gradio app
|
| 175 |
+
check_cog_server()
|
| 176 |
+
|
| 177 |
app.queue(max_size=12, api_open=False).launch(share=False, show_api=False)
|