Spaces:
Running
Running
import gradio as gr | |
import torch | |
import os | |
import time | |
# --- Try to import ctransformers for GGUF, provide helpful message if not found --- | |
# We try to import ctransformers first as it's the preferred method for ZeroCPU efficiency | |
try: | |
from ctransformers import AutoModelForCausalLM as AutoModelForCausalLM_GGUF | |
# We still need AutoTokenizer from transformers for standard tokenizing | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
GGUF_AVAILABLE = True | |
except ImportError: | |
GGUF_AVAILABLE = False | |
print("WARNING: 'ctransformers' not found. This app relies on it for efficient CPU inference.") | |
print("Please install it with: pip install ctransformers transformers") | |
# If ctransformers isn't available, we'll fall back to standard transformers loading, which is slower on CPU. | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# --- Configuration for Models and Generation --- | |
# Original model (for reference, or if a GPU is detected, though ZeroCPU is target) | |
ORIGINAL_MODEL_ID = "HuggingFaceTB/SmolLM2-360M-Instruct" | |
# !!! IMPORTANT !!! For efficient ZeroCPU (CPU-only) inference, | |
# a GGUF quantized model is HIGHLY RECOMMENDED. | |
# SmolLM2-360M-Instruct does NOT have a readily available GGUF version from common providers. | |
# Therefore, for ZeroCPU deployment, this app will use a common, small GGUF model by default. | |
# If you find a GGUF for SmolLM2 later, you can update these: | |
GGUF_MODEL_ID = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" # Recommended GGUF placeholder for ZeroCPU | |
GGUF_MODEL_FILENAME = "tinyllama-1.1b-chat-v1.0.Q4_K_M.gguf" # Corresponding GGUF file name | |
# --- Generation Parameters --- | |
MAX_NEW_TOKENS = 256 | |
TEMPERATURE = 0.7 | |
TOP_K = 50 | |
TOP_P = 0.95 | |
DO_SAMPLE = True # Important for varied responses | |
# Global model and tokenizer variables | |
model = None | |
tokenizer = None | |
device = "cpu" # Explicitly set to CPU for ZeroCPU deployment | |
# --- Model Loading Function --- | |
def load_model_for_zerocpu(): | |
global model, tokenizer, device | |
# Attempt to load the GGUF model first for efficiency on ZeroCPU | |
if GGUF_AVAILABLE: | |
print(f"Attempting to load GGUF model '{GGUF_MODEL_ID}' (file: '{GGUF_MODEL_FILENAME}') for ZeroCPU...") | |
try: | |
model = AutoModelForCausalLM_GGUF.from_pretrained( | |
GGUF_MODEL_ID, | |
model_file=GGUF_MODEL_FILENAME, | |
model_type="llama", # Most GGUF models are Llama-based (TinyLlama is) | |
gpu_layers=0 # Ensures it runs on CPU, not GPU | |
) | |
# Use the tokenizer from the original SmolLM2 for chat template consistency | |
tokenizer = AutoTokenizer.from_pretrained(ORIGINAL_MODEL_ID) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
print(f"GGUF model '{GGUF_MODEL_ID}' loaded successfully for CPU.") | |
return # Exit function if GGUF model loaded successfully | |
except Exception as e: | |
print(f"WARNING: Could not load GGUF model '{GGUF_MODEL_ID}' from '{GGUF_MODEL_FILENAME}': {e}") | |
print(f"Falling back to standard Hugging Face model '{ORIGINAL_MODEL_ID}' for CPU (will be slower without GGUF quantization).") | |
# Continue to the next block to try loading the standard HF model | |
else: | |
print("WARNING: ctransformers is not available. Will load standard Hugging Face model directly.") | |
# Fallback/alternative: Load the standard Hugging Face model (will be slower on CPU without GGUF) | |
print(f"Loading standard Hugging Face model '{ORIGINAL_MODEL_ID}' for CPU...") | |
try: | |
model = AutoModelForCausalLM.from_pretrained(ORIGINAL_MODEL_ID) | |
tokenizer = AutoTokenizer.from_pretrained(ORIGINAL_MODEL_ID) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model.to(device) # Explicitly move model to CPU | |
print(f"Standard model '{ORIGINAL_MODEL_ID}' loaded successfully on CPU.") | |
except Exception as e: | |
print(f"CRITICAL ERROR: Could not load standard model '{ORIGINAL_MODEL_ID}' on CPU: {e}") | |
print("Please ensure the model ID is correct, you have enough RAM, and dependencies are installed.") | |
model = None # Indicate failure to load | |
tokenizer = None # Indicate failure to load | |
# --- Inference Function for Gradio ChatInterface --- | |
def predict_chat(message: str, history: list): | |
# 'history' is a list of lists, where each inner list is [user_message, bot_message] | |
# 'message' is the current user input | |
if model is None or tokenizer is None: | |
yield "Error: Model or tokenizer failed to load. Please check the Space logs for details." | |
return | |
# Build the full conversation history for the model's chat template | |
messages = [{"role": "system", "content": "You are a friendly chatbot."}] | |
for human_msg, ai_msg in history: | |
messages.append({"role": "user", "content": human_msg}) | |
messages.append({"role": "assistant", "content": ai_msg}) | |
messages.append({"role": "user", "content": message}) # Add the current user message | |
generated_text = "" | |
start_time = time.time() # Start timing for the current turn | |
if isinstance(model, AutoModelForCausalLM_GGUF): # Check if the loaded model is from ctransformers | |
# For ctransformers (GGUF), manually construct a simple prompt string | |
prompt_input = "" | |
for msg in messages: | |
if msg["role"] == "system": | |
prompt_input += f"{msg['content']}\n" | |
elif msg["role"] == "user": | |
prompt_input += f"User: {msg['content']}\n" | |
elif msg["role"] == "assistant": | |
prompt_input += f"Assistant: {msg['content']}\n" | |
prompt_input += "Assistant:" # Instruct the model to generate the assistant's response | |
# Use the GGUF model's generate method | |
for token in model.generate( | |
prompt_input, | |
max_new_tokens=MAX_NEW_TOKENS, | |
temperature=TEMPERATURE, | |
top_k=TOP_K, | |
top_p=TOP_P, | |
do_sample=DO_SAMPLE, | |
repetition_penalty=1.1, # Common for GGUF models | |
stop=["User:", "\nUser", "\n#", "\n##", "<|endoftext|>"] # Common stop tokens | |
): | |
generated_text += token | |
yield generated_text # Yield partial response for streaming in Gradio | |
else: # If standard Hugging Face transformers model was loaded (slower on CPU) | |
# Apply the tokenizer's chat template | |
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) | |
# Generate the response | |
outputs = model.generate( | |
inputs, | |
max_new_tokens=MAX_NEW_TOKENS, | |
temperature=TEMPERATURE, | |
top_k=TOP_K, | |
top_p=TOP_P, | |
do_sample=DO_SAMPLE, | |
pad_token_id=tokenizer.pad_token_id # Important for generation | |
) | |
# Decode only the newly generated tokens | |
generated_text = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True).strip() | |
yield generated_text # Yield the full response at once (transformers.generate doesn't stream by default) | |
end_time = time.time() | |
print(f"Inference Time for this turn: {end_time - start_time:.2f} seconds") | |
# --- Gradio Interface Setup --- | |
if __name__ == "__main__": | |
# Load the model globally when the Gradio app starts | |
load_model_for_zerocpu() | |
# Define a custom startup message for the chatbot | |
initial_chatbot_message = ( | |
"Hello! I'm an AI assistant. I'm currently running in a CPU-only " | |
"environment for efficient demonstration. How can I help you today?" | |
) | |
demo = gr.ChatInterface( | |
fn=predict_chat, # The function that handles chat prediction | |
chatbot=gr.Chatbot(height=500), # The chat display area | |
textbox=gr.Textbox( | |
placeholder="Ask me a question...", | |
container=False, | |
scale=7 | |
), | |
title="SmolLM2-360M-Instruct (or TinyLlama GGUF) on ZeroCPU", | |
description=( | |
f"This Space demonstrates an LLM for efficient CPU-only inference. " | |
f"**Note:** For ZeroCPU, this app prioritizes `{GGUF_MODEL_ID}` (a GGUF-quantized model " | |
f"like TinyLlama) due to better CPU performance than `{ORIGINAL_MODEL_ID}` " | |
f"without GGUF. Expect varied responses each run due to randomized generation." | |
), | |
theme="soft", | |
examples=[ # Pre-defined examples for quick testing | |
["What is the capital of France?"], | |
["Can you tell me a fun fact about outer space?"], | |
["What's the best way to stay motivated?"], | |
], | |
cache_examples=False, # Important: Ensures examples run inference each time, not from cache | |
clear_btn="Clear Chat", # Button to clear the conversation | |
# Custom message to start the conversation from the assistant | |
initial_chatbot_message=initial_chatbot_message | |
) | |
# Launch the Gradio app | |
# `share=True` creates a public link (useful for testing, but not needed on HF Spaces) | |
# `server_name="0.0.0.0"` and `server_port=7860` are typically default for HF Spaces | |
demo.launch() |