ajalisatgi commited on
Commit
83ac167
Β·
verified Β·
1 Parent(s): 6b255cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -63,15 +63,19 @@ def retrieve_documents(question, k=5):
63
 
64
 
65
  # βœ… Function to Generate AI Response
 
 
66
  def generate_response(question, context):
67
  """Generate AI response using OpenAI GPT-4"""
 
68
  if not context or "No relevant documents found." in context:
69
  return "No relevant context available. Try a different query."
70
 
71
  full_prompt = f"Context: {context}\n\nQuestion: {question}"
72
 
73
  try:
74
- response = openai.ChatCompletion.create(
 
75
  model="gpt-4",
76
  messages=[
77
  {"role": "system", "content": "You are an AI assistant that answers user queries based on the given context."},
@@ -80,10 +84,11 @@ def generate_response(question, context):
80
  max_tokens=300,
81
  temperature=0.7
82
  )
83
- return response["choices"][0]["message"]["content"].strip()
84
  except Exception as e:
85
  return f"Error generating response: {str(e)}"
86
 
 
87
  # βœ… Full RAG Pipeline
88
  def rag_pipeline(question):
89
  retrieved_docs = retrieve_documents(question, k=5)
 
63
 
64
 
65
  # βœ… Function to Generate AI Response
66
+ import openai
67
+
68
  def generate_response(question, context):
69
  """Generate AI response using OpenAI GPT-4"""
70
+
71
  if not context or "No relevant documents found." in context:
72
  return "No relevant context available. Try a different query."
73
 
74
  full_prompt = f"Context: {context}\n\nQuestion: {question}"
75
 
76
  try:
77
+ client = openai.OpenAI() # New OpenAI client format
78
+ response = client.chat.completions.create(
79
  model="gpt-4",
80
  messages=[
81
  {"role": "system", "content": "You are an AI assistant that answers user queries based on the given context."},
 
84
  max_tokens=300,
85
  temperature=0.7
86
  )
87
+ return response.choices[0].message.content.strip()
88
  except Exception as e:
89
  return f"Error generating response: {str(e)}"
90
 
91
+
92
  # βœ… Full RAG Pipeline
93
  def rag_pipeline(question):
94
  retrieved_docs = retrieve_documents(question, k=5)