Spaces:
Sleeping
Sleeping
Update app.py
Browse filesAccommodate Version4
app.py
CHANGED
@@ -1,80 +1,91 @@
|
|
1 |
import gradio as gr
|
2 |
import openai
|
3 |
import os
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
5 |
from langchain_community.vectorstores import Chroma
|
6 |
from langchain.schema import Document
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
#
|
13 |
-
openai.api_key = os.getenv("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") # Add in Hugging Face Secrets
|
14 |
-
|
15 |
-
# Load ChromaDB with RunGalileo Dataset
|
16 |
-
persist_directory = "./docs/chroma/"
|
17 |
-
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_model)
|
18 |
-
|
19 |
-
from langchain_community.vectorstores import Chroma
|
20 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
21 |
-
from langchain.schema import Document
|
22 |
-
|
23 |
-
# Load the embedding model
|
24 |
-
model_name = "intfloat/e5-small"
|
25 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
26 |
-
|
27 |
-
# Define the ChromaDB persist directory
|
28 |
-
persist_directory = "./docs/chroma/"
|
29 |
-
|
30 |
-
# Load ChromaDB (or create if empty)
|
31 |
-
vectordb = Chroma(persist_directory=persist_directory, embedding_function=embedding_model)
|
32 |
-
|
33 |
-
# Check if documents exist
|
34 |
-
if vectordb._collection.count() == 0:
|
35 |
-
print("β οΈ No documents found in ChromaDB. Re-indexing dataset...")
|
36 |
-
|
37 |
-
# Sample dataset (Replace with real RunGalileo dataset)
|
38 |
-
documents = [
|
39 |
-
Document(page_content="HVAC systems help regulate indoor temperature."),
|
40 |
-
Document(page_content="Chiller plants are used in large buildings for cooling."),
|
41 |
-
Document(page_content="BACnet is a common protocol for building automation."),
|
42 |
-
Document(page_content="Heat pumps are essential in modern energy-efficient HVAC designs."),
|
43 |
-
Document(page_content="Smart thermostats improve energy efficiency through AI-based control.")
|
44 |
-
]
|
45 |
-
|
46 |
-
# Insert documents into ChromaDB
|
47 |
-
vectordb.add_documents(documents)
|
48 |
-
|
49 |
-
print(" Documents successfully indexed into ChromaDB.")
|
50 |
-
else:
|
51 |
-
print(f" ChromaDB contains {vectordb._collection.count()} documents.")
|
52 |
-
|
53 |
-
|
54 |
-
# Function to Retrieve Top-K Relevant Documents
|
55 |
def retrieve_documents(question, k=5):
|
56 |
-
"""Retrieve top K relevant documents from ChromaDB"""
|
57 |
docs = vectordb.similarity_search(question, k=k)
|
58 |
-
|
59 |
if not docs:
|
60 |
return ["β οΈ No relevant documents found. Try a different query."]
|
61 |
-
|
62 |
return [doc.page_content for doc in docs]
|
63 |
|
64 |
-
|
65 |
-
# Function to Generate AI Response
|
66 |
-
import openai
|
67 |
-
|
68 |
def generate_response(question, context):
|
69 |
-
"""Generate AI response using OpenAI GPT-4"""
|
70 |
-
|
71 |
if not context or "No relevant documents found." in context:
|
72 |
return "No relevant context available. Try a different query."
|
73 |
|
74 |
full_prompt = f"Context: {context}\n\nQuestion: {question}"
|
75 |
|
76 |
try:
|
77 |
-
client = openai.OpenAI()
|
78 |
response = client.chat.completions.create(
|
79 |
model="gpt-4",
|
80 |
messages=[
|
@@ -88,24 +99,61 @@ def generate_response(question, context):
|
|
88 |
except Exception as e:
|
89 |
return f"Error generating response: {str(e)}"
|
90 |
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
def rag_pipeline(question):
|
94 |
retrieved_docs = retrieve_documents(question, k=5)
|
95 |
context = " ".join(retrieved_docs)
|
96 |
response = generate_response(question, context)
|
97 |
-
return response, "\n\n".join(retrieved_docs)
|
98 |
|
99 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
iface = gr.Interface(
|
101 |
fn=rag_pipeline,
|
102 |
inputs=gr.Textbox(label="Enter your question"),
|
103 |
outputs=[
|
104 |
gr.Textbox(label="Generated Response"),
|
105 |
-
gr.Textbox(label="Retrieved Documents")
|
|
|
106 |
],
|
107 |
-
title="RAG-Based
|
108 |
-
description="Enter a question and retrieve relevant documents with AI-generated response."
|
109 |
)
|
110 |
|
111 |
# β
Launch the Gradio App
|
|
|
1 |
import gradio as gr
|
2 |
import openai
|
3 |
import os
|
4 |
+
import nltk
|
5 |
+
import shutil
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
from datasets import load_dataset
|
9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
from langchain_community.vectorstores import Chroma
|
11 |
from langchain.schema import Document
|
12 |
+
from sentence_transformers import SentenceTransformer
|
13 |
+
from sklearn.metrics import mean_squared_error, roc_auc_score
|
14 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
16 |
+
|
17 |
+
# β
Load Pretrained Model
|
18 |
+
model_name = "bert-base-uncased"
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
embedding_model = HuggingFaceEmbeddings(model_name=model_name)
|
21 |
+
embedding_model.client.to(device)
|
22 |
+
|
23 |
+
# β
Set OpenAI API Key (Replace with your own)
|
24 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
25 |
+
|
26 |
+
# β
Download NLTK Dependencies
|
27 |
+
nltk.download('punkt')
|
28 |
+
|
29 |
+
# β
Load RunGalileo Datasets
|
30 |
+
ragbench = {}
|
31 |
+
for dataset in ['covidqa', 'cuad', 'delucionqa', 'emanual', 'expertqa', 'finqa', 'hagrid', 'hotpotqa', 'msmarco', 'pubmedqa', 'tatqa', 'techqa']:
|
32 |
+
ragbench[dataset] = load_dataset("rungalileo/ragbench", dataset)
|
33 |
+
print("Datasets Loaded β
")
|
34 |
+
|
35 |
+
# β
Function to Chunk Documents
|
36 |
+
def chunk_documents_semantic(documents, max_chunk_size=500):
|
37 |
+
chunks = []
|
38 |
+
for doc in documents:
|
39 |
+
sentences = nltk.sent_tokenize(doc)
|
40 |
+
current_chunk = ""
|
41 |
+
for sentence in sentences:
|
42 |
+
if len(current_chunk) + len(sentence) <= max_chunk_size:
|
43 |
+
current_chunk += sentence + " "
|
44 |
+
else:
|
45 |
+
chunks.append(current_chunk.strip())
|
46 |
+
current_chunk = sentence + " "
|
47 |
+
if current_chunk:
|
48 |
+
chunks.append(current_chunk.strip())
|
49 |
+
return chunks
|
50 |
+
|
51 |
+
# β
Chunk the Entire Dataset
|
52 |
+
chunked_ragbench = {}
|
53 |
+
for dataset_name in ragbench.keys():
|
54 |
+
for split in ragbench[dataset_name].keys():
|
55 |
+
original_documents_full = ragbench[dataset_name][split]['documents']
|
56 |
+
chunked_documents_full = chunk_documents_semantic(original_documents_full)
|
57 |
+
chunked_ragbench[split] = chunked_documents_full
|
58 |
+
print("Chunking Completed β
")
|
59 |
+
|
60 |
+
# β
Setup ChromaDB
|
61 |
+
persist_directory = "chroma_db_directory"
|
62 |
+
if os.path.exists(persist_directory):
|
63 |
+
shutil.rmtree(persist_directory)
|
64 |
+
|
65 |
+
documents = [Document(page_content=chunk) for chunk in chunked_documents_full]
|
66 |
+
vectordb = Chroma.from_documents(
|
67 |
+
documents=documents,
|
68 |
+
embedding=embedding_model,
|
69 |
+
persist_directory=persist_directory
|
70 |
+
)
|
71 |
+
vectordb.persist()
|
72 |
|
73 |
+
# β
Retrieve Documents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def retrieve_documents(question, k=5):
|
|
|
75 |
docs = vectordb.similarity_search(question, k=k)
|
|
|
76 |
if not docs:
|
77 |
return ["β οΈ No relevant documents found. Try a different query."]
|
|
|
78 |
return [doc.page_content for doc in docs]
|
79 |
|
80 |
+
# β
Generate AI Response
|
|
|
|
|
|
|
81 |
def generate_response(question, context):
|
|
|
|
|
82 |
if not context or "No relevant documents found." in context:
|
83 |
return "No relevant context available. Try a different query."
|
84 |
|
85 |
full_prompt = f"Context: {context}\n\nQuestion: {question}"
|
86 |
|
87 |
try:
|
88 |
+
client = openai.OpenAI()
|
89 |
response = client.chat.completions.create(
|
90 |
model="gpt-4",
|
91 |
messages=[
|
|
|
99 |
except Exception as e:
|
100 |
return f"Error generating response: {str(e)}"
|
101 |
|
102 |
+
# β
Compute Context Relevance, Utilization, Completeness, Adherence
|
103 |
+
def compute_cosine_similarity(text1, text2):
|
104 |
+
vectorizer = TfidfVectorizer()
|
105 |
+
vectors = vectorizer.fit_transform([text1, text2])
|
106 |
+
return cosine_similarity(vectors[0], vectors[1])[0][0]
|
107 |
|
108 |
+
def context_relevance(question, relevant_documents):
|
109 |
+
combined_docs = " ".join(relevant_documents)
|
110 |
+
return compute_cosine_similarity(question, combined_docs)
|
111 |
+
|
112 |
+
def context_utilization(response, relevant_documents):
|
113 |
+
combined_docs = " ".join(relevant_documents)
|
114 |
+
return compute_cosine_similarity(response, combined_docs)
|
115 |
+
|
116 |
+
def completeness(response, ground_truth_answer):
|
117 |
+
return compute_cosine_similarity(response, ground_truth_answer)
|
118 |
+
|
119 |
+
def adherence(response, relevant_documents):
|
120 |
+
combined_docs = " ".join(relevant_documents)
|
121 |
+
response_tokens = set(response.split())
|
122 |
+
relevant_tokens = set(combined_docs.split())
|
123 |
+
supported_tokens = response_tokens.intersection(relevant_tokens)
|
124 |
+
return len(supported_tokens) / len(response_tokens)
|
125 |
+
|
126 |
+
def compute_rmse(predicted_values, ground_truth_values):
|
127 |
+
return np.sqrt(mean_squared_error(ground_truth_values, predicted_values))
|
128 |
+
|
129 |
+
# β
Full RAG Pipeline
|
130 |
def rag_pipeline(question):
|
131 |
retrieved_docs = retrieve_documents(question, k=5)
|
132 |
context = " ".join(retrieved_docs)
|
133 |
response = generate_response(question, context)
|
|
|
134 |
|
135 |
+
# Compute Evaluation Metrics
|
136 |
+
ground_truth_answer = "Sample ground truth answer from dataset"
|
137 |
+
predicted_metrics = {
|
138 |
+
"context_relevance": context_relevance(question, retrieved_docs),
|
139 |
+
"context_utilization": context_utilization(response, retrieved_docs),
|
140 |
+
"completeness": completeness(response, ground_truth_answer),
|
141 |
+
"adherence": adherence(response, retrieved_docs)
|
142 |
+
}
|
143 |
+
|
144 |
+
return response, "\n\n".join(retrieved_docs), predicted_metrics
|
145 |
+
|
146 |
+
# β
Gradio UI Interface
|
147 |
iface = gr.Interface(
|
148 |
fn=rag_pipeline,
|
149 |
inputs=gr.Textbox(label="Enter your question"),
|
150 |
outputs=[
|
151 |
gr.Textbox(label="Generated Response"),
|
152 |
+
gr.Textbox(label="Retrieved Documents"),
|
153 |
+
gr.JSON(label="Evaluation Metrics")
|
154 |
],
|
155 |
+
title="RAG-Based QA System for RunGalileo",
|
156 |
+
description="Enter a question and retrieve relevant documents with AI-generated response & evaluation metrics."
|
157 |
)
|
158 |
|
159 |
# β
Launch the Gradio App
|