Gradio / app.py
ajalisatgi's picture
Update app.py
4d16da0 verified
raw
history blame
1.55 kB
import gradio as gr
import openai
from datasets import load_dataset
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Initialize OpenAI API key
openai.api_key = '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'
# Load just one dataset to start
dataset = load_dataset("rungalileo/ragbench", "hotpotqa", split='train')
logger.info("Dataset loaded successfully")
def process_query(query):
try:
# Get a relevant document from the dataset
context = dataset['documents'][0] # Using first document as example
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant for the RagBench dataset."},
{"role": "user", "content": f"Context: {context}\nQuestion: {query}"}
],
max_tokens=300,
temperature=0.7,
)
return response.choices[0].message.content.strip()
except Exception as e:
return f"Query processing: {str(e)}"
# Create simple Gradio interface
demo = gr.Interface(
fn=process_query,
inputs=gr.Textbox(label="Question"),
outputs=gr.Textbox(label="Answer"),
title="RagBench QA System",
description="Ask questions about HotpotQA dataset"
)
if __name__ == "__main__":
demo.launch(debug=True)