Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import torch | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline | |
| import random | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| # Initialize the base model and specific LoRA | |
| base_model = "black-forest-labs/FLUX.1-dev" | |
| pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) | |
| lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA" | |
| trigger_word = "" # Leave trigger_word blank if not used. | |
| pipe.load_lora_weights(lora_repo) | |
| pipe.to("cuda") | |
| MAX_SEED = 2**32-1 | |
| def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
| # Set random seed for reproducibility | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device="cuda").manual_seed(seed) | |
| # Update progress bar (0% saat mulai) | |
| progress(0, "Starting image generation...") | |
| # Generate image with progress updates | |
| for i in range(1, steps + 1): | |
| # Simulate the processing step (in a real scenario, you would integrate this with your image generation process) | |
| if i % (steps // 10) == 0: # Update every 10% of the steps | |
| progress(i / steps * 100, f"Processing step {i} of {steps}...") | |
| # Generate image using the pipeline | |
| image = pipe( | |
| prompt=f"{prompt} {trigger_word}", | |
| num_inference_steps=steps, | |
| guidance_scale=cfg_scale, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| joint_attention_kwargs={"scale": lora_scale}, | |
| ).images[0] | |
| # Final update (100%) | |
| progress(100, "Completed!") | |
| yield image, seed | |
| # Example cached image and settings | |
| example_image_path = "example0.webp" # Replace with the actual path to the example image | |
| example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene.""" | |
| example_cfg_scale = 3.2 | |
| example_steps = 32 | |
| example_width = 1152 | |
| example_height = 896 | |
| example_seed = 3981632454 | |
| example_lora_scale = 0.85 | |
| def load_example(): | |
| # Load example image from file | |
| example_image = Image.open(example_image_path) | |
| return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image | |
| with gr.Blocks() as app: | |
| gr.Markdown("# Flux RealismLora Image Generator") | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| prompt = gr.TextArea(label="Prompt", placeholder="Type a prompt", lines=5) | |
| generate_button = gr.Button("Generate") | |
| cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale) | |
| steps = gr.Slider(label="Steps", minimum=1, maximum=100, step=1, value=example_steps) | |
| width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=example_width) | |
| height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=example_height) | |
| randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed) | |
| lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale) | |
| with gr.Column(scale=1): | |
| result = gr.Image(label="Generated Image") | |
| # Automatically load example data and image when the interface is launched | |
| app.load(load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]) | |
| generate_button.click( | |
| run_lora, | |
| inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], | |
| outputs=[result, seed] | |
| ) | |
| app.queue() | |
| app.launch() |