Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
import time
|
|
|
5 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
6 |
import pandas as pd
|
7 |
from sklearn.feature_extraction.text import CountVectorizer
|
@@ -11,30 +12,47 @@ import re
|
|
11 |
|
12 |
# Download necessary NLTK data
|
13 |
try:
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
nltk.download('punkt')
|
17 |
-
try:
|
18 |
-
nltk.data.find('taggers/averaged_perceptron_tagger')
|
19 |
-
except LookupError:
|
20 |
nltk.download('averaged_perceptron_tagger')
|
21 |
|
22 |
-
#
|
23 |
-
|
|
|
|
|
24 |
|
25 |
-
# Load Grammar Scoring Model (CoLA)
|
26 |
-
cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
|
27 |
-
cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
|
28 |
-
grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=cola_tokenizer)
|
29 |
|
30 |
-
# Load Grammar Correction Model (T5)
|
31 |
-
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
32 |
|
33 |
-
# Add sentiment analysis
|
34 |
-
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
35 |
|
36 |
-
# Add fluency analysis (using BERT)
|
37 |
-
fluency_pipeline = pipeline("text-classification", model="textattack/bert-base-uncased-CoLA")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Common English filler words to detect
|
40 |
FILLER_WORDS = ["um", "uh", "like", "you know", "actually", "basically", "literally",
|
@@ -57,38 +75,56 @@ def calculate_speaking_rate(text, duration):
|
|
57 |
|
58 |
def analyze_vocabulary_richness(text):
|
59 |
"""Analyze vocabulary richness"""
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
if not words:
|
62 |
-
return 0,
|
63 |
|
64 |
# Vocabulary richness (unique words / total words)
|
65 |
unique_words = set(words)
|
66 |
richness = len(unique_words) / len(words)
|
67 |
|
68 |
-
# POS tagging
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
return richness, pos_counts
|
75 |
|
76 |
def analyze_sentence_complexity(text):
|
77 |
-
"""Analyze sentence complexity"""
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def create_detailed_feedback(transcription, grammar_score, corrected_text,
|
94 |
sentiment, fluency, filler_ratio, speaking_rate,
|
@@ -152,120 +188,208 @@ def process_audio(audio):
|
|
152 |
|
153 |
start_time = time.time()
|
154 |
|
155 |
-
#
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
#
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
try:
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
except:
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
transcription = transcription_result["text"]
|
176 |
-
|
177 |
-
# Step 2: Grammar Scoring
|
178 |
-
score_output = grammar_pipeline(transcription)[0]
|
179 |
-
label = score_output["label"]
|
180 |
-
confidence = score_output["score"]
|
181 |
-
grammar_score = f"{label} ({confidence:.2f})"
|
182 |
-
|
183 |
-
# Step 3: Grammar Correction
|
184 |
-
corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
|
185 |
-
|
186 |
-
# Step 4: Sentiment Analysis
|
187 |
-
sentiment_result = sentiment_pipeline(transcription)[0]
|
188 |
-
sentiment = sentiment_result["label"]
|
189 |
-
sentiment_score = sentiment_result["score"]
|
190 |
-
|
191 |
-
# Step 5: Fluency Analysis
|
192 |
-
fluency_result = fluency_pipeline(transcription)[0]
|
193 |
-
fluency_score = fluency_result["score"] if fluency_result["label"] == "acceptable" else 1 - fluency_result["score"]
|
194 |
-
|
195 |
-
# Step 6: Filler Words Analysis
|
196 |
-
filler_count, filler_ratio = count_filler_words(transcription)
|
197 |
-
|
198 |
-
# Step 7: Speaking Rate
|
199 |
-
speaking_rate = calculate_speaking_rate(transcription, duration)
|
200 |
-
|
201 |
-
# Step 8: Vocabulary Richness
|
202 |
-
vocab_richness, pos_counts = analyze_vocabulary_richness(transcription)
|
203 |
-
|
204 |
-
# Step 9: Sentence Complexity
|
205 |
-
avg_words, sentence_variation = analyze_sentence_complexity(transcription)
|
206 |
-
|
207 |
-
# Create feedback
|
208 |
-
feedback = create_detailed_feedback(
|
209 |
-
transcription, grammar_score, corrected, sentiment,
|
210 |
-
fluency_score, filler_ratio, speaking_rate, vocab_richness, avg_words
|
211 |
-
)
|
212 |
-
|
213 |
-
# Create metrics visualization
|
214 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
215 |
-
|
216 |
-
# Define metrics for radar chart
|
217 |
-
categories = ['Grammar', 'Fluency', 'Vocabulary', 'Speaking Rate', 'Clarity']
|
218 |
-
|
219 |
-
# Normalize scores between 0 and 1
|
220 |
-
grammar_norm = confidence if label == "acceptable" else 1 - confidence
|
221 |
-
speaking_rate_norm = max(0, min(1, 1 - abs((speaking_rate - 140) / 100))) # Optimal around 140 wpm
|
222 |
-
|
223 |
-
values = [
|
224 |
-
grammar_norm,
|
225 |
-
fluency_score,
|
226 |
-
vocab_richness,
|
227 |
-
speaking_rate_norm,
|
228 |
-
1 - filler_ratio # Lower filler ratio is better
|
229 |
-
]
|
230 |
-
|
231 |
-
# Complete the loop for the radar chart
|
232 |
-
values += values[:1]
|
233 |
-
categories += categories[:1]
|
234 |
-
|
235 |
-
# Convert to radians and plot
|
236 |
-
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
237 |
-
angles += angles[:1]
|
238 |
-
|
239 |
-
ax.plot(angles, values, linewidth=2, linestyle='solid')
|
240 |
-
ax.fill(angles, values, alpha=0.25)
|
241 |
-
ax.set_yticklabels([])
|
242 |
-
ax.set_xticks(angles[:-1])
|
243 |
-
ax.set_xticklabels(categories[:-1])
|
244 |
-
ax.grid(True)
|
245 |
-
plt.title('Speaking Performance Metrics', size=15, color='navy', y=1.1)
|
246 |
-
|
247 |
-
# Create detailed analysis text
|
248 |
-
processing_time = time.time() - start_time
|
249 |
-
detailed_analysis = f"""
|
250 |
-
## Detailed Speech Analysis
|
251 |
|
252 |
-
|
253 |
-
|
254 |
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
-
### Word Types Used:
|
265 |
-
{', '.join([f"{k}: {v}" for k, v in sorted(pos_counts.items(), key=lambda x: x[1], reverse=True)[:5]])}
|
266 |
-
"""
|
267 |
-
|
268 |
-
return transcription, grammar_score, corrected, feedback, fig, detailed_analysis
|
269 |
|
270 |
# Create theme
|
271 |
theme = gr.themes.Soft(
|
|
|
2 |
import numpy as np
|
3 |
import matplotlib.pyplot as plt
|
4 |
import time
|
5 |
+
import os
|
6 |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
7 |
import pandas as pd
|
8 |
from sklearn.feature_extraction.text import CountVectorizer
|
|
|
12 |
|
13 |
# Download necessary NLTK data
|
14 |
try:
|
15 |
+
# Make the download more reliable by specifying download directory
|
16 |
+
nltk_data_dir = '/home/user/nltk_data'
|
17 |
+
os.makedirs(nltk_data_dir, exist_ok=True)
|
18 |
+
|
19 |
+
# Download all required resources
|
20 |
+
nltk.download('punkt', download_dir=nltk_data_dir)
|
21 |
+
nltk.download('averaged_perceptron_tagger', download_dir=nltk_data_dir)
|
22 |
+
|
23 |
+
# Set the data path to include our custom directory
|
24 |
+
nltk.data.path.insert(0, nltk_data_dir)
|
25 |
+
except Exception as e:
|
26 |
+
print(f"NLTK download issue: {e}")
|
27 |
+
# Fallback simple approach if the directory approach fails
|
28 |
nltk.download('punkt')
|
|
|
|
|
|
|
29 |
nltk.download('averaged_perceptron_tagger')
|
30 |
|
31 |
+
# Add error handling around model loading
|
32 |
+
try:
|
33 |
+
# Load Whisper for ASR
|
34 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v3")
|
35 |
|
36 |
+
# Load Grammar Scoring Model (CoLA)
|
37 |
+
cola_model = AutoModelForSequenceClassification.from_pretrained("textattack/roberta-base-CoLA")
|
38 |
+
cola_tokenizer = AutoTokenizer.from_pretrained("textattack/roberta-base-CoLA")
|
39 |
+
grammar_pipeline = pipeline("text-classification", model=cola_model, tokenizer=cola_tokenizer)
|
40 |
|
41 |
+
# Load Grammar Correction Model (T5)
|
42 |
+
correction_pipeline = pipeline("text2text-generation", model="vennify/t5-base-grammar-correction")
|
43 |
|
44 |
+
# Add sentiment analysis
|
45 |
+
sentiment_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
46 |
|
47 |
+
# Add fluency analysis (using BERT)
|
48 |
+
fluency_pipeline = pipeline("text-classification", model="textattack/bert-base-uncased-CoLA")
|
49 |
+
|
50 |
+
# Set variables to track loaded models
|
51 |
+
MODELS_LOADED = True
|
52 |
+
except Exception as e:
|
53 |
+
print(f"Error loading models: {e}")
|
54 |
+
# Set variable to track failed model loading
|
55 |
+
MODELS_LOADED = False
|
56 |
|
57 |
# Common English filler words to detect
|
58 |
FILLER_WORDS = ["um", "uh", "like", "you know", "actually", "basically", "literally",
|
|
|
75 |
|
76 |
def analyze_vocabulary_richness(text):
|
77 |
"""Analyze vocabulary richness"""
|
78 |
+
# Split text by simple regex instead of using word_tokenize to avoid NLTK issues
|
79 |
+
try:
|
80 |
+
# Try using word_tokenize first
|
81 |
+
words = word_tokenize(text.lower())
|
82 |
+
except LookupError:
|
83 |
+
# Fallback to simple regex-based tokenization if NLTK fails
|
84 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
85 |
+
|
86 |
if not words:
|
87 |
+
return 0, {}
|
88 |
|
89 |
# Vocabulary richness (unique words / total words)
|
90 |
unique_words = set(words)
|
91 |
richness = len(unique_words) / len(words)
|
92 |
|
93 |
+
# Use simple POS tagging or skip it if NLTK fails
|
94 |
+
try:
|
95 |
+
pos_tags = nltk.pos_tag(words)
|
96 |
+
pos_counts = {}
|
97 |
+
for _, tag in pos_tags:
|
98 |
+
pos_counts[tag] = pos_counts.get(tag, 0) + 1
|
99 |
+
except Exception:
|
100 |
+
# Return simplified count if POS tagging fails
|
101 |
+
pos_counts = {"WORD": len(words), "UNIQUE": len(unique_words)}
|
102 |
|
103 |
return richness, pos_counts
|
104 |
|
105 |
def analyze_sentence_complexity(text):
|
106 |
+
"""Analyze sentence complexity with error handling"""
|
107 |
+
try:
|
108 |
+
# Simple sentence splitting by punctuation
|
109 |
+
sentences = re.split(r'[.!?]+', text)
|
110 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
111 |
+
|
112 |
+
if not sentences:
|
113 |
+
return 0, 0
|
114 |
+
|
115 |
+
# Average words per sentence
|
116 |
+
words_per_sentence = [len(s.split()) for s in sentences]
|
117 |
+
avg_words = sum(words_per_sentence) / len(sentences)
|
118 |
+
|
119 |
+
# Sentence length variation (standard deviation)
|
120 |
+
sentence_length_variation = np.std(words_per_sentence) if len(sentences) > 1 else 0
|
121 |
+
|
122 |
+
return avg_words, sentence_length_variation
|
123 |
+
except Exception:
|
124 |
+
# In case of any error, return simple defaults
|
125 |
+
word_count = len(text.split())
|
126 |
+
# Assume approximately 15 words per sentence if we can't detect
|
127 |
+
return word_count / max(1, text.count('.') + text.count('!') + text.count('?')), 0
|
128 |
|
129 |
def create_detailed_feedback(transcription, grammar_score, corrected_text,
|
130 |
sentiment, fluency, filler_ratio, speaking_rate,
|
|
|
188 |
|
189 |
start_time = time.time()
|
190 |
|
191 |
+
# Check if models loaded properly
|
192 |
+
if 'MODELS_LOADED' in globals() and not MODELS_LOADED:
|
193 |
+
return ("Models failed to load. Please check the logs for details.",
|
194 |
+
"Error", "Error", "Unable to process audio due to model loading issues.",
|
195 |
+
None, "## Error\nThe required models couldn't be loaded. Please check the system configuration.")
|
196 |
+
|
197 |
+
try:
|
198 |
+
# Get audio duration (assuming audio[1] contains the sample rate)
|
199 |
+
sample_rate = 16000 # Default if we can't determine
|
200 |
+
if isinstance(audio, tuple) and len(audio) > 1:
|
201 |
+
sample_rate = audio[1]
|
202 |
+
|
203 |
+
# For file uploads, we need to handle differently
|
204 |
+
duration = 0
|
205 |
+
if isinstance(audio, str):
|
206 |
+
# This is a file path
|
207 |
+
try:
|
208 |
+
import librosa
|
209 |
+
y, sr = librosa.load(audio, sr=None)
|
210 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
211 |
+
except Exception as e:
|
212 |
+
print(f"Error getting duration: {e}")
|
213 |
+
# Estimate duration based on file size
|
214 |
+
try:
|
215 |
+
file_size = os.path.getsize(audio)
|
216 |
+
# Rough estimate: 16kHz, 16-bit audio is about 32KB per second
|
217 |
+
duration = file_size / 32000
|
218 |
+
except:
|
219 |
+
duration = 10 # Default to 10 seconds if we can't determine
|
220 |
+
else:
|
221 |
+
# Assuming a tuple with (samples, sample_rate)
|
222 |
+
try:
|
223 |
+
duration = len(audio[0]) / sample_rate if sample_rate > 0 else 0
|
224 |
+
except:
|
225 |
+
duration = 10 # Default duration
|
226 |
+
|
227 |
+
# Step 1: Transcription
|
228 |
+
try:
|
229 |
+
transcription_result = asr_pipeline(audio)
|
230 |
+
transcription = transcription_result["text"]
|
231 |
+
except Exception as e:
|
232 |
+
print(f"Transcription error: {e}")
|
233 |
+
return ("Error in speech recognition. Please try again.",
|
234 |
+
"Error", "Error", "There was an error processing your audio.",
|
235 |
+
None, f"## Error\nError in speech recognition: {str(e)[:100]}...")
|
236 |
+
|
237 |
+
if not transcription or transcription.strip() == "":
|
238 |
+
return ("No speech detected. Please speak louder or check your microphone.",
|
239 |
+
"N/A", "N/A", "No speech detected in the audio.",
|
240 |
+
None, "## No Speech Detected\nPlease try recording again with clearer speech.")
|
241 |
+
|
242 |
+
# Step 2: Grammar Scoring
|
243 |
try:
|
244 |
+
score_output = grammar_pipeline(transcription)[0]
|
245 |
+
label = score_output["label"]
|
246 |
+
confidence = score_output["score"]
|
247 |
+
grammar_score = f"{label} ({confidence:.2f})"
|
248 |
+
except Exception as e:
|
249 |
+
print(f"Grammar scoring error: {e}")
|
250 |
+
label = "UNKNOWN"
|
251 |
+
confidence = 0.5
|
252 |
+
grammar_score = "Could not analyze grammar"
|
253 |
+
|
254 |
+
# Step 3: Grammar Correction
|
255 |
+
try:
|
256 |
+
corrected = correction_pipeline(transcription, max_length=128)[0]["generated_text"]
|
257 |
+
except Exception as e:
|
258 |
+
print(f"Grammar correction error: {e}")
|
259 |
+
corrected = transcription
|
260 |
+
|
261 |
+
# Step 4: Sentiment Analysis
|
262 |
+
try:
|
263 |
+
sentiment_result = sentiment_pipeline(transcription)[0]
|
264 |
+
sentiment = sentiment_result["label"]
|
265 |
+
sentiment_score = sentiment_result["score"]
|
266 |
+
except Exception as e:
|
267 |
+
print(f"Sentiment analysis error: {e}")
|
268 |
+
sentiment = "NEUTRAL"
|
269 |
+
sentiment_score = 0.5
|
270 |
+
|
271 |
+
# Step 5: Fluency Analysis
|
272 |
+
try:
|
273 |
+
fluency_result = fluency_pipeline(transcription)[0]
|
274 |
+
fluency_score = fluency_result["score"] if fluency_result["label"] == "acceptable" else 1 - fluency_result["score"]
|
275 |
+
except Exception as e:
|
276 |
+
print(f"Fluency analysis error: {e}")
|
277 |
+
fluency_score = 0.5
|
278 |
+
|
279 |
+
# Step 6: Filler Words Analysis
|
280 |
+
try:
|
281 |
+
filler_count, filler_ratio = count_filler_words(transcription)
|
282 |
+
except Exception as e:
|
283 |
+
print(f"Filler word analysis error: {e}")
|
284 |
+
filler_count, filler_ratio = 0, 0
|
285 |
+
|
286 |
+
# Step 7: Speaking Rate
|
287 |
+
try:
|
288 |
+
speaking_rate = calculate_speaking_rate(transcription, duration)
|
289 |
+
except Exception as e:
|
290 |
+
print(f"Speaking rate calculation error: {e}")
|
291 |
+
speaking_rate = 0
|
292 |
+
|
293 |
+
# Step 8: Vocabulary Richness
|
294 |
+
try:
|
295 |
+
vocab_richness, pos_counts = analyze_vocabulary_richness(transcription)
|
296 |
+
except Exception as e:
|
297 |
+
print(f"Vocabulary analysis error: {e}")
|
298 |
+
vocab_richness, pos_counts = 0.5, {"N/A": 1}
|
299 |
+
|
300 |
+
# Step 9: Sentence Complexity
|
301 |
+
try:
|
302 |
+
avg_words, sentence_variation = analyze_sentence_complexity(transcription)
|
303 |
+
except Exception as e:
|
304 |
+
print(f"Sentence complexity analysis error: {e}")
|
305 |
+
avg_words, sentence_variation = 0, 0
|
306 |
+
|
307 |
+
# Create feedback
|
308 |
+
try:
|
309 |
+
feedback = create_detailed_feedback(
|
310 |
+
transcription, grammar_score, corrected, sentiment,
|
311 |
+
fluency_score, filler_ratio, speaking_rate, vocab_richness, avg_words
|
312 |
+
)
|
313 |
+
except Exception as e:
|
314 |
+
print(f"Feedback creation error: {e}")
|
315 |
+
feedback = "Error generating detailed feedback."
|
316 |
+
|
317 |
+
# Create metrics visualization
|
318 |
+
try:
|
319 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
320 |
+
|
321 |
+
# Define metrics for radar chart
|
322 |
+
categories = ['Grammar', 'Fluency', 'Vocabulary', 'Speaking Rate', 'Clarity']
|
323 |
+
|
324 |
+
# Normalize scores between 0 and 1
|
325 |
+
grammar_norm = confidence if label == "acceptable" else 1 - confidence
|
326 |
+
speaking_rate_norm = max(0, min(1, 1 - abs((speaking_rate - 140) / 100))) # Optimal around 140 wpm
|
327 |
+
|
328 |
+
values = [
|
329 |
+
grammar_norm,
|
330 |
+
fluency_score,
|
331 |
+
vocab_richness,
|
332 |
+
speaking_rate_norm,
|
333 |
+
1 - filler_ratio # Lower filler ratio is better
|
334 |
+
]
|
335 |
+
|
336 |
+
# Complete the loop for the radar chart
|
337 |
+
values += values[:1]
|
338 |
+
categories += categories[:1]
|
339 |
+
|
340 |
+
# Convert to radians and plot
|
341 |
+
angles = np.linspace(0, 2*np.pi, len(categories), endpoint=False).tolist()
|
342 |
+
angles += angles[:1]
|
343 |
+
|
344 |
+
ax.plot(angles, values, linewidth=2, linestyle='solid')
|
345 |
+
ax.fill(angles, values, alpha=0.25)
|
346 |
+
ax.set_yticklabels([])
|
347 |
+
ax.set_xticks(angles[:-1])
|
348 |
+
ax.set_xticklabels(categories[:-1])
|
349 |
+
ax.grid(True)
|
350 |
+
plt.title('Speaking Performance Metrics', size=15, color='navy', y=1.1)
|
351 |
+
except Exception as e:
|
352 |
+
print(f"Visualization error: {e}")
|
353 |
+
# Create a simple error figure
|
354 |
+
fig, ax = plt.subplots(figsize=(6, 3))
|
355 |
+
ax.text(0.5, 0.5, "Error creating visualization",
|
356 |
+
horizontalalignment='center', verticalalignment='center')
|
357 |
+
ax.axis('off')
|
358 |
+
|
359 |
+
# Create detailed analysis text
|
360 |
+
processing_time = time.time() - start_time
|
361 |
+
try:
|
362 |
+
pos_counts_str = ', '.join([f"{k}: {v}" for k, v in sorted(pos_counts.items(), key=lambda x: x[1], reverse=True)[:5]])
|
363 |
except:
|
364 |
+
pos_counts_str = "N/A"
|
365 |
+
|
366 |
+
detailed_analysis = f"""
|
367 |
+
## Detailed Speech Analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
368 |
|
369 |
+
**Processing Time:** {processing_time:.2f} seconds
|
370 |
+
**Audio Duration:** {duration:.2f} seconds
|
371 |
|
372 |
+
### Metrics:
|
373 |
+
- **Grammar Score:** {confidence:.2f} ({label})
|
374 |
+
- **Fluency Score:** {fluency_score:.2f}
|
375 |
+
- **Speaking Rate:** {speaking_rate:.1f} words per minute
|
376 |
+
- **Vocabulary Richness:** {vocab_richness:.2f} (higher is better)
|
377 |
+
- **Filler Words:** {filler_count} occurrences ({filler_ratio:.1%} of speech)
|
378 |
+
- **Avg Words Per Sentence:** {avg_words:.1f}
|
379 |
+
- **Sentiment:** {sentiment} ({sentiment_score:.2f})
|
380 |
+
|
381 |
+
### Word Types Used:
|
382 |
+
{pos_counts_str}
|
383 |
+
"""
|
384 |
+
|
385 |
+
return transcription, grammar_score, corrected, feedback, fig, detailed_analysis
|
386 |
+
|
387 |
+
except Exception as e:
|
388 |
+
print(f"Unexpected error in process_audio: {e}")
|
389 |
+
return ("An unexpected error occurred during processing.",
|
390 |
+
"Error", "Error", "There was an unexpected error processing your audio.",
|
391 |
+
None, f"## Unexpected Error\n\nAn error occurred: {str(e)[:200]}...")
|
392 |
|
|
|
|
|
|
|
|
|
|
|
393 |
|
394 |
# Create theme
|
395 |
theme = gr.themes.Soft(
|