Spaces:
Runtime error
Runtime error
add
Browse files
data/raw_data/annotations/Letter 0-1-ccf1b225-ann.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers[torch]==4.36.1
|
| 2 |
+
numpy==1.26.3
|
| 3 |
+
scikit-learn==1.3.2
|
| 4 |
+
matplotlib==3.8.2
|
| 5 |
+
datasets==2.16.1
|
| 6 |
+
evaluate==0.4.1
|
| 7 |
+
accelerate==0.25.0
|
| 8 |
+
seqeval==1.2.2
|
| 9 |
+
pandas==2.1.4
|
source/services/ner/train/train.py
ADDED
|
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Token classification (PyTorch)
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/github/huggingface/notebooks/blob/master/course/en/chapter7/section2_pt.ipynb
|
| 8 |
+
|
| 9 |
+
# Token classification (PyTorch)
|
| 10 |
+
|
| 11 |
+
Install the Transformers, Datasets, and Evaluate libraries to run this notebook.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
!pip install datasets evaluate transformers[sentencepiece]
|
| 15 |
+
!pip install accelerate
|
| 16 |
+
|
| 17 |
+
"""You will also need to be logged in to the Hugging Face Hub. Execute the following and enter your credentials."""
|
| 18 |
+
|
| 19 |
+
from huggingface_hub import notebook_login
|
| 20 |
+
|
| 21 |
+
notebook_login()
|
| 22 |
+
|
| 23 |
+
from datasets import load_dataset
|
| 24 |
+
|
| 25 |
+
raw_datasets = load_dataset("conll2003")
|
| 26 |
+
|
| 27 |
+
raw_datasets
|
| 28 |
+
|
| 29 |
+
raw_datasets["train"][0]["tokens"]
|
| 30 |
+
|
| 31 |
+
raw_datasets["train"][0]["ner_tags"]
|
| 32 |
+
|
| 33 |
+
ner_feature = raw_datasets["train"].features["ner_tags"]
|
| 34 |
+
ner_feature
|
| 35 |
+
|
| 36 |
+
label_names = ner_feature.feature.names
|
| 37 |
+
label_names
|
| 38 |
+
|
| 39 |
+
words = raw_datasets["train"][0]["tokens"]
|
| 40 |
+
labels = raw_datasets["train"][0]["ner_tags"]
|
| 41 |
+
line1 = ""
|
| 42 |
+
line2 = ""
|
| 43 |
+
for word, label in zip(words, labels):
|
| 44 |
+
full_label = label_names[label]
|
| 45 |
+
max_length = max(len(word), len(full_label))
|
| 46 |
+
line1 += word + " " * (max_length - len(word) + 1)
|
| 47 |
+
line2 += full_label + " " * (max_length - len(full_label) + 1)
|
| 48 |
+
|
| 49 |
+
print(line1)
|
| 50 |
+
print(line2)
|
| 51 |
+
|
| 52 |
+
from transformers import AutoTokenizer
|
| 53 |
+
|
| 54 |
+
model_checkpoint = "bert-base-cased"
|
| 55 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
| 56 |
+
|
| 57 |
+
tokenizer.is_fast
|
| 58 |
+
|
| 59 |
+
inputs = tokenizer(raw_datasets["train"][0]["tokens"], is_split_into_words=True)
|
| 60 |
+
inputs.tokens()
|
| 61 |
+
|
| 62 |
+
inputs.word_ids()
|
| 63 |
+
|
| 64 |
+
def align_labels_with_tokens(labels, word_ids):
|
| 65 |
+
new_labels = []
|
| 66 |
+
current_word = None
|
| 67 |
+
for word_id in word_ids:
|
| 68 |
+
if word_id != current_word:
|
| 69 |
+
# Start of a new word!
|
| 70 |
+
current_word = word_id
|
| 71 |
+
label = -100 if word_id is None else labels[word_id]
|
| 72 |
+
new_labels.append(label)
|
| 73 |
+
elif word_id is None:
|
| 74 |
+
# Special token
|
| 75 |
+
new_labels.append(-100)
|
| 76 |
+
else:
|
| 77 |
+
# Same word as previous token
|
| 78 |
+
label = labels[word_id]
|
| 79 |
+
# If the label is B-XXX we change it to I-XXX
|
| 80 |
+
if label % 2 == 1:
|
| 81 |
+
label += 1
|
| 82 |
+
new_labels.append(label)
|
| 83 |
+
|
| 84 |
+
return new_labels
|
| 85 |
+
|
| 86 |
+
labels = raw_datasets["train"][0]["ner_tags"]
|
| 87 |
+
word_ids = inputs.word_ids()
|
| 88 |
+
print(labels)
|
| 89 |
+
print(align_labels_with_tokens(labels, word_ids))
|
| 90 |
+
|
| 91 |
+
def tokenize_and_align_labels(examples):
|
| 92 |
+
tokenized_inputs = tokenizer(
|
| 93 |
+
examples["tokens"], truncation=True, is_split_into_words=True
|
| 94 |
+
)
|
| 95 |
+
all_labels = examples["ner_tags"]
|
| 96 |
+
new_labels = []
|
| 97 |
+
for i, labels in enumerate(all_labels):
|
| 98 |
+
word_ids = tokenized_inputs.word_ids(i)
|
| 99 |
+
new_labels.append(align_labels_with_tokens(labels, word_ids))
|
| 100 |
+
|
| 101 |
+
tokenized_inputs["labels"] = new_labels
|
| 102 |
+
return tokenized_inputs
|
| 103 |
+
|
| 104 |
+
tokenized_datasets = raw_datasets.map(
|
| 105 |
+
tokenize_and_align_labels,
|
| 106 |
+
batched=True,
|
| 107 |
+
remove_columns=raw_datasets["train"].column_names,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
from transformers import DataCollatorForTokenClassification
|
| 111 |
+
|
| 112 |
+
data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer)
|
| 113 |
+
|
| 114 |
+
batch = data_collator([tokenized_datasets["train"][i] for i in range(2)])
|
| 115 |
+
batch["labels"]
|
| 116 |
+
|
| 117 |
+
for i in range(2):
|
| 118 |
+
print(tokenized_datasets["train"][i]["labels"])
|
| 119 |
+
|
| 120 |
+
!pip install seqeval
|
| 121 |
+
|
| 122 |
+
import evaluate
|
| 123 |
+
|
| 124 |
+
metric = evaluate.load("seqeval")
|
| 125 |
+
|
| 126 |
+
labels = raw_datasets["train"][0]["ner_tags"]
|
| 127 |
+
labels = [label_names[i] for i in labels]
|
| 128 |
+
labels
|
| 129 |
+
|
| 130 |
+
predictions = labels.copy()
|
| 131 |
+
predictions[2] = "O"
|
| 132 |
+
metric.compute(predictions=[predictions], references=[labels])
|
| 133 |
+
|
| 134 |
+
import numpy as np
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def compute_metrics(eval_preds):
|
| 138 |
+
logits, labels = eval_preds
|
| 139 |
+
predictions = np.argmax(logits, axis=-1)
|
| 140 |
+
|
| 141 |
+
# Remove ignored index (special tokens) and convert to labels
|
| 142 |
+
true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
|
| 143 |
+
true_predictions = [
|
| 144 |
+
[label_names[p] for (p, l) in zip(prediction, label) if l != -100]
|
| 145 |
+
for prediction, label in zip(predictions, labels)
|
| 146 |
+
]
|
| 147 |
+
all_metrics = metric.compute(predictions=true_predictions, references=true_labels)
|
| 148 |
+
return {
|
| 149 |
+
"precision": all_metrics["overall_precision"],
|
| 150 |
+
"recall": all_metrics["overall_recall"],
|
| 151 |
+
"f1": all_metrics["overall_f1"],
|
| 152 |
+
"accuracy": all_metrics["overall_accuracy"],
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
id2label = {i: label for i, label in enumerate(label_names)}
|
| 156 |
+
label2id = {v: k for k, v in id2label.items()}
|
| 157 |
+
|
| 158 |
+
from transformers import AutoModelForTokenClassification
|
| 159 |
+
|
| 160 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
| 161 |
+
model_checkpoint,
|
| 162 |
+
id2label=id2label,
|
| 163 |
+
label2id=label2id,
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
model.config.num_labels
|
| 167 |
+
|
| 168 |
+
from huggingface_hub import notebook_login
|
| 169 |
+
|
| 170 |
+
notebook_login()
|
| 171 |
+
|
| 172 |
+
from transformers import TrainingArguments
|
| 173 |
+
|
| 174 |
+
args = TrainingArguments(
|
| 175 |
+
"bert-finetuned-ner",
|
| 176 |
+
evaluation_strategy="epoch",
|
| 177 |
+
save_strategy="epoch",
|
| 178 |
+
learning_rate=2e-5,
|
| 179 |
+
num_train_epochs=3,
|
| 180 |
+
weight_decay=0.01,
|
| 181 |
+
push_to_hub=True,
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
from transformers import Trainer
|
| 185 |
+
|
| 186 |
+
trainer = Trainer(
|
| 187 |
+
model=model,
|
| 188 |
+
args=args,
|
| 189 |
+
train_dataset=tokenized_datasets["train"],
|
| 190 |
+
eval_dataset=tokenized_datasets["validation"],
|
| 191 |
+
data_collator=data_collator,
|
| 192 |
+
compute_metrics=compute_metrics,
|
| 193 |
+
tokenizer=tokenizer,
|
| 194 |
+
)
|
| 195 |
+
trainer.train()
|
| 196 |
+
|
| 197 |
+
trainer.push_to_hub(commit_message="Training complete")
|
| 198 |
+
|
| 199 |
+
from torch.utils.data import DataLoader
|
| 200 |
+
|
| 201 |
+
train_dataloader = DataLoader(
|
| 202 |
+
tokenized_datasets["train"],
|
| 203 |
+
shuffle=True,
|
| 204 |
+
collate_fn=data_collator,
|
| 205 |
+
batch_size=8,
|
| 206 |
+
)
|
| 207 |
+
eval_dataloader = DataLoader(
|
| 208 |
+
tokenized_datasets["validation"], collate_fn=data_collator, batch_size=8
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
| 212 |
+
model_checkpoint,
|
| 213 |
+
id2label=id2label,
|
| 214 |
+
label2id=label2id,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
from torch.optim import AdamW
|
| 218 |
+
|
| 219 |
+
optimizer = AdamW(model.parameters(), lr=2e-5)
|
| 220 |
+
|
| 221 |
+
from accelerate import Accelerator
|
| 222 |
+
|
| 223 |
+
accelerator = Accelerator()
|
| 224 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
| 225 |
+
model, optimizer, train_dataloader, eval_dataloader
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
from transformers import get_scheduler
|
| 229 |
+
|
| 230 |
+
num_train_epochs = 3
|
| 231 |
+
num_update_steps_per_epoch = len(train_dataloader)
|
| 232 |
+
num_training_steps = num_train_epochs * num_update_steps_per_epoch
|
| 233 |
+
|
| 234 |
+
lr_scheduler = get_scheduler(
|
| 235 |
+
"linear",
|
| 236 |
+
optimizer=optimizer,
|
| 237 |
+
num_warmup_steps=0,
|
| 238 |
+
num_training_steps=num_training_steps,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
from huggingface_hub import Repository, get_full_repo_name
|
| 242 |
+
|
| 243 |
+
model_name = "bert-finetuned-ner-accelerate"
|
| 244 |
+
repo_name = get_full_repo_name(model_name)
|
| 245 |
+
repo_name
|
| 246 |
+
|
| 247 |
+
output_dir = "bert-finetuned-ner-accelerate"
|
| 248 |
+
repo = Repository(output_dir, clone_from=repo_name)
|
| 249 |
+
|
| 250 |
+
def postprocess(predictions, labels):
|
| 251 |
+
predictions = predictions.detach().cpu().clone().numpy()
|
| 252 |
+
labels = labels.detach().cpu().clone().numpy()
|
| 253 |
+
|
| 254 |
+
# Remove ignored index (special tokens) and convert to labels
|
| 255 |
+
true_labels = [[label_names[l] for l in label if l != -100] for label in labels]
|
| 256 |
+
true_predictions = [
|
| 257 |
+
[label_names[p] for (p, l) in zip(prediction, label) if l != -100]
|
| 258 |
+
for prediction, label in zip(predictions, labels)
|
| 259 |
+
]
|
| 260 |
+
return true_labels, true_predictions
|
| 261 |
+
|
| 262 |
+
from tqdm.auto import tqdm
|
| 263 |
+
import torch
|
| 264 |
+
|
| 265 |
+
progress_bar = tqdm(range(num_training_steps))
|
| 266 |
+
|
| 267 |
+
for epoch in range(num_train_epochs):
|
| 268 |
+
# Training
|
| 269 |
+
model.train()
|
| 270 |
+
for batch in train_dataloader:
|
| 271 |
+
outputs = model(**batch)
|
| 272 |
+
loss = outputs.loss
|
| 273 |
+
accelerator.backward(loss)
|
| 274 |
+
|
| 275 |
+
optimizer.step()
|
| 276 |
+
lr_scheduler.step()
|
| 277 |
+
optimizer.zero_grad()
|
| 278 |
+
progress_bar.update(1)
|
| 279 |
+
|
| 280 |
+
# Evaluation
|
| 281 |
+
model.eval()
|
| 282 |
+
for batch in eval_dataloader:
|
| 283 |
+
with torch.no_grad():
|
| 284 |
+
outputs = model(**batch)
|
| 285 |
+
|
| 286 |
+
predictions = outputs.logits.argmax(dim=-1)
|
| 287 |
+
labels = batch["labels"]
|
| 288 |
+
|
| 289 |
+
# Necessary to pad predictions and labels for being gathered
|
| 290 |
+
predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100)
|
| 291 |
+
labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100)
|
| 292 |
+
|
| 293 |
+
predictions_gathered = accelerator.gather(predictions)
|
| 294 |
+
labels_gathered = accelerator.gather(labels)
|
| 295 |
+
|
| 296 |
+
true_predictions, true_labels = postprocess(predictions_gathered, labels_gathered)
|
| 297 |
+
metric.add_batch(predictions=true_predictions, references=true_labels)
|
| 298 |
+
|
| 299 |
+
results = metric.compute()
|
| 300 |
+
print(
|
| 301 |
+
f"epoch {epoch}:",
|
| 302 |
+
{
|
| 303 |
+
key: results[f"overall_{key}"]
|
| 304 |
+
for key in ["precision", "recall", "f1", "accuracy"]
|
| 305 |
+
},
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
# Save and upload
|
| 309 |
+
accelerator.wait_for_everyone()
|
| 310 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
| 311 |
+
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
|
| 312 |
+
if accelerator.is_main_process:
|
| 313 |
+
tokenizer.save_pretrained(output_dir)
|
| 314 |
+
repo.push_to_hub(
|
| 315 |
+
commit_message=f"Training in progress epoch {epoch}", blocking=False
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
accelerator.wait_for_everyone()
|
| 319 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
| 320 |
+
unwrapped_model.save_pretrained(output_dir, save_function=accelerator.save)
|
| 321 |
+
|
| 322 |
+
from transformers import pipeline
|
| 323 |
+
|
| 324 |
+
# Replace this with your own checkpoint
|
| 325 |
+
model_checkpoint = "huggingface-course/bert-finetuned-ner"
|
| 326 |
+
token_classifier = pipeline(
|
| 327 |
+
"token-classification", model=model_checkpoint, aggregation_strategy="simple"
|
| 328 |
+
)
|
| 329 |
+
token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn.")
|