import streamlit as st from sdoc_request import get_tianshu_response import pandas as pd import time import json # 设置页面标题 st.title("SDoc 问题智能分析") # 创建文件上传组件 st.text("1. 少量问题,请访问链接提问。") st.markdown("https://aiapi.sheincorp.cn/llm/#/scene/general_app/7180") uploaded_file = st.file_uploader("2. 大量问题,请上传 Excel 文件,必须含有【问题描述】字段。", type=["xlsx"]) if uploaded_file is not None: # 读取上传的 Excel 文件 sdoc_df = pd.read_excel(uploaded_file) questions = sdoc_df["问题描述"].to_list() # AI 智能分析 categories = [] modules = [] summaries = [] # 创建进度条 progress_bar = st.progress(0) total_questions = len(questions) for i, qs in enumerate(questions): if qs and len(qs) > 0: time.sleep(1) params = {"HOA_USERINPUT": qs} temp_result = get_tianshu_response(params) try: print(temp_result) print(type(temp_result)) result = json.loads(temp_result) except json.JSONDecodeError: result = {"类别": '', "模块": '', "问题归类": ''} st.warning(f"问题 '{qs}' 的返回结果不是有效的 JSON 格式。") else: result = {"类别": '', "模块": '', "问题归类": ''} st.write(f"问题{i+1}: {qs}") st.write(f"答案: {result}") categories.append(result.get("类别")) modules.append(result.get("模块")) summaries.append(result.get("问题归类")) # 更新进度条 progress_bar.progress((i + 1) / total_questions) # 结果数据整理 sdoc_df['类别'] = categories sdoc_df['模块'] = modules sdoc_df['问题归类'] = summaries # 将结果保存为 Excel 文件 output_file = "smart_analysis.xlsx" sdoc_df.to_excel(output_file, index=0) # 创建下载链接 with open(output_file, "rb") as file: btn = st.download_button( label="下载分析结果", data=file, file_name="smart_analysis.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" )