Spaces:
Sleeping
Sleeping
import streamlit as st | |
from sdoc_request import get_tianshu_response | |
import pandas as pd | |
import time | |
import json | |
# 设置页面标题 | |
st.title("SDoc 问题智能分析") | |
# 创建文件上传组件 | |
st.text("1. 少量问题,请访问链接提问。") | |
st.markdown("https://aiapi.sheincorp.cn/llm/#/scene/general_app/7180") | |
uploaded_file = st.file_uploader("2. 大量问题,请上传 Excel 文件,必须含有【问题描述】字段。", type=["xlsx"]) | |
if uploaded_file is not None: | |
# 读取上传的 Excel 文件 | |
sdoc_df = pd.read_excel(uploaded_file) | |
questions = sdoc_df["问题描述"].to_list() | |
# AI 智能分析 | |
categories = [] | |
modules = [] | |
summaries = [] | |
# 创建进度条 | |
progress_bar = st.progress(0) | |
total_questions = len(questions) | |
for i, qs in enumerate(questions): | |
if qs and len(qs) > 0: | |
time.sleep(1) | |
params = {"HOA_USERINPUT": qs} | |
temp_result = get_tianshu_response(params) | |
try: | |
print(temp_result) | |
print(type(temp_result)) | |
result = json.loads(temp_result) | |
except json.JSONDecodeError: | |
result = {"类别": '', "模块": '', "问题归类": ''} | |
st.warning(f"问题 '{qs}' 的返回结果不是有效的 JSON 格式。") | |
else: | |
result = {"类别": '', "模块": '', "问题归类": ''} | |
st.write(f"问题{i+1}: {qs}") | |
st.write(f"答案: {result}") | |
categories.append(result.get("类别")) | |
modules.append(result.get("模块")) | |
summaries.append(result.get("问题归类")) | |
# 更新进度条 | |
progress_bar.progress((i + 1) / total_questions) | |
# 结果数据整理 | |
sdoc_df['类别'] = categories | |
sdoc_df['模块'] = modules | |
sdoc_df['问题归类'] = summaries | |
# 将结果保存为 Excel 文件 | |
output_file = "smart_analysis.xlsx" | |
sdoc_df.to_excel(output_file, index=0) | |
# 创建下载链接 | |
with open(output_file, "rb") as file: | |
btn = st.download_button( | |
label="下载分析结果", | |
data=file, | |
file_name="smart_analysis.xlsx", | |
mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" | |
) | |