chatbot_v1 / app.py
aimaswx's picture
Update app.py
52056f0
import gradio as gr
from text_generation import Client
hf_api_key = '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'
#FalcomLM-instruct endpoint on the text_generation library
#client = Client("https://api-inference.huggingface.co/models/tiiuae/falcon-40b-instruct", headers={"Authorization": f"Bearer {hf_api_key}"}, timeout=120)
#client = Client("https://wjmh73a2pphfr6ed.us-east-1.aws.endpoints.huggingface.cloud", headers={"Authorization": f"Bearer {hf_api_key}"}, timeout=120)
client = Client("https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct", headers={"Authorization": f"Bearer {hf_api_key}"}, timeout=120)
def generate(input):
output = client.generate(input,max_new_tokens=1024).generated_text
return output
def respond(message, chat_history):
#No LLM here, just respond with a random pre-made message
'''bot_message = random.choice(["Tell me more about it",
"Cool, but I'm not interested",
"Hmmmm, ok then"]) '''
bot_message = generate(message)
chat_history.append((message, bot_message))
return "", chat_history
with gr.Blocks() as demo:
chatbot = gr.Chatbot() #just to fit the notebook
msg = gr.Textbox(label="Prompt")
btn = gr.Button("Submit")
clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")
btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) #Press enter to submit
demo.launch(height=240)