Spaces:
Sleeping
Sleeping
import gradio as gr | |
from text_generation import Client | |
hf_api_key = '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' | |
#FalcomLM-instruct endpoint on the text_generation library | |
#client = Client("https://api-inference.huggingface.co/models/tiiuae/falcon-40b-instruct", headers={"Authorization": f"Bearer {hf_api_key}"}, timeout=120) | |
#client = Client("https://wjmh73a2pphfr6ed.us-east-1.aws.endpoints.huggingface.cloud", headers={"Authorization": f"Bearer {hf_api_key}"}, timeout=120) | |
client = Client("https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct", headers={"Authorization": f"Bearer {hf_api_key}"}, timeout=120) | |
def generate(input): | |
output = client.generate(input,max_new_tokens=1024).generated_text | |
return output | |
def respond(message, chat_history): | |
#No LLM here, just respond with a random pre-made message | |
'''bot_message = random.choice(["Tell me more about it", | |
"Cool, but I'm not interested", | |
"Hmmmm, ok then"]) ''' | |
bot_message = generate(message) | |
chat_history.append((message, bot_message)) | |
return "", chat_history | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() #just to fit the notebook | |
msg = gr.Textbox(label="Prompt") | |
btn = gr.Button("Submit") | |
clear = gr.ClearButton(components=[msg, chatbot], value="Clear console") | |
btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) | |
msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) #Press enter to submit | |
demo.launch(height=240) |