Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
import torch | |
import torch.nn.functional as F | |
# Load model and tokenizer | |
model_name = "Omartificial-Intelligence-Space/SA-BERT-Classifier" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
# Put model in eval mode | |
model.eval() | |
# Inference function | |
def classify_sentiment(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probs = F.softmax(logits, dim=1).squeeze() | |
# Map class indices to human-readable labels if known (example below) | |
labels = ["negative", "neutral", "positive"] | |
top_class = torch.argmax(probs).item() | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=classify_sentiment, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), | |
outputs=gr.Label(num_top_classes=3), | |
title="Arabic Sentiment Classifier (SA-BERT)" | |
) | |
interface.launch() | |