### ----------------------------- ### ### libraries ### ### ----------------------------- ### import gradio as gr import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn import metrics ### ------------------------------ ### ### data transformation ### ### ------------------------------ ### # load dataset uncleaned_data = pd.read_csv('data.csv') # remove timestamp from dataset (always first column) uncleaned_data = uncleaned_data.iloc[: , 1:] data = pd.DataFrame() # keep track of which columns are categorical and what # those columns' value mappings are # structure: {colname1: {...}, colname2: {...} } cat_value_dicts = {} final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1] # for each column... for (colname, colval) in uncleaned_data.iteritems(): # check if col is already a number; if so, add col directly # to new dataframe and skip to next column if isinstance(colval.values[0], (np.integer, float)): data[colname] = uncleaned_data[colname].copy() continue # structure: { "val_name": 0, "val_name_2": 1, ...} new_dict = {} # reverse structure for final col: {0: "val_name", 1: "val_name_2"} rev_dict = {} val = 0 # first index per column transformed_col_vals = [] # new numeric datapoints # if not, for each item in that column... for (row, item) in enumerate(colval.values): # if item is not in this col's dict... if item not in new_dict: new_dict[item] = val rev_dict[val] = item val += 1 # then add numerical value to transformed dataframe transformed_col_vals.append(new_dict[item]) # reverse dictionary only for final col (0, 1) => (vals) if colname == final_colname: cat_value_dicts[colname] = rev_dict else: cat_value_dicts[colname] = new_dict data[colname] = transformed_col_vals ### -------------------------------- ### ### model training ### ### -------------------------------- ### # select features and predicton; automatically selects last column as prediction cols = len(data.columns) num_features = cols - 1 x = data.iloc[: , :num_features] y = data.iloc[: , num_features:] # split data into training and testing sets x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=42) # instantiate the model (using default parameters) # FIX: Increased max_iter to prevent ConvergenceWarning model = LogisticRegression(max_iter=1000) model.fit(x_train, y_train.values.ravel()) y_pred = model.predict(x_test) ### -------------------------------- ### ### article generation ### ### -------------------------------- ### # borrow file reading function from reader.py def get_feat(): # Handle cases with multiple classes in logistic regression if len(model.coef_) > 1: # For multi-class, calculate importance across all classes importance = np.mean([abs(c) for c in model.coef_], axis=0) else: importance = abs(model.coef_[0]) idx = np.argmax(importance) return data.columns[idx] acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 1)) + "%" most_imp_feat = get_feat() # info = get_article(acc, most_imp_feat) ### ------------------------------- ### ### interface creation ### ### ------------------------------- ### # predictor for generic number of features def general_predictor(*args): try: features = [] # transform categorical input for colname, arg in zip(data.columns, args): if (colname in cat_value_dicts): features.append(cat_value_dicts[colname][arg]) else: features.append(arg) # predict single datapoint new_input = [features] result = model.predict(new_input) return cat_value_dicts[final_colname][result[0]] except Exception as e: return "Error: Please make sure all fields are filled out." # add data labels to replace those lost via star-args block = gr.Blocks() with open('info.md') as f: with block: gr.Markdown(f.readline()) gr.Markdown('Take the quiz to get a personalized recommendation using AI.') with gr.Row(): # FIX: Replaced gr.Box with gr.Group with gr.Group(): inputls = [] for colname in data.columns: # skip last column if colname == final_colname: continue # access categories dict if data is categorical # otherwise, just use a number input if colname in cat_value_dicts: radio_options = list(cat_value_dicts[colname].keys()) inputls.append(gr.Dropdown(radio_options, type="value", label=colname)) else: # add numerical input inputls.append(gr.Number(label=colname)) submit = gr.Button("Click to see your personalized result!", variant="primary") output = gr.Textbox(label="Your recommendation:", placeholder="your recommendation will appear here") submit.click(fn=general_predictor, inputs=inputls, outputs=output) with gr.Row(): # FIX: Replaced gr.Box with gr.Group with gr.Group(): gr.Markdown(f"