Commit
·
b128ff3
1
Parent(s):
a129db9
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### ----------------------------- ###
|
| 2 |
+
### libraries ###
|
| 3 |
+
### ----------------------------- ###
|
| 4 |
+
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import numpy as np
|
| 8 |
+
from sklearn.model_selection import train_test_split
|
| 9 |
+
from sklearn.linear_model import LogisticRegression
|
| 10 |
+
from sklearn import metrics
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
### ------------------------------ ###
|
| 14 |
+
### data transformation ###
|
| 15 |
+
### ------------------------------ ###
|
| 16 |
+
|
| 17 |
+
# load dataset
|
| 18 |
+
uncleaned_data = pd.read_csv('data.csv')
|
| 19 |
+
|
| 20 |
+
# remove timestamp from dataset (always first column)
|
| 21 |
+
uncleaned_data = uncleaned_data.iloc[: , 1:]
|
| 22 |
+
data = pd.DataFrame()
|
| 23 |
+
|
| 24 |
+
# keep track of which columns are categorical and what
|
| 25 |
+
# those columns' value mappings are
|
| 26 |
+
# structure: {colname1: {...}, colname2: {...} }
|
| 27 |
+
cat_value_dicts = {}
|
| 28 |
+
final_colname = uncleaned_data.columns[len(uncleaned_data.columns) - 1]
|
| 29 |
+
|
| 30 |
+
# for each column...
|
| 31 |
+
for (colname, colval) in uncleaned_data.iteritems():
|
| 32 |
+
|
| 33 |
+
# check if col is already a number; if so, add col directly
|
| 34 |
+
# to new dataframe and skip to next column
|
| 35 |
+
if isinstance(colval.values[0], (np.integer, float)):
|
| 36 |
+
data[colname] = uncleaned_data[colname].copy()
|
| 37 |
+
continue
|
| 38 |
+
|
| 39 |
+
# structure: {0: "lilac", 1: "blue", ...}
|
| 40 |
+
new_dict = {}
|
| 41 |
+
val = 0 # first index per column
|
| 42 |
+
transformed_col_vals = [] # new numeric datapoints
|
| 43 |
+
|
| 44 |
+
# if not, for each item in that column...
|
| 45 |
+
for (row, item) in enumerate(colval.values):
|
| 46 |
+
|
| 47 |
+
# if item is not in this col's dict...
|
| 48 |
+
if item not in new_dict:
|
| 49 |
+
new_dict[item] = val
|
| 50 |
+
val += 1
|
| 51 |
+
|
| 52 |
+
# then add numerical value to transformed dataframe
|
| 53 |
+
transformed_col_vals.append(new_dict[item])
|
| 54 |
+
|
| 55 |
+
# reverse dictionary only for final col (0, 1) => (vals)
|
| 56 |
+
if colname == final_colname:
|
| 57 |
+
new_dict = {value : key for (key, value) in new_dict.items()}
|
| 58 |
+
|
| 59 |
+
cat_value_dicts[colname] = new_dict
|
| 60 |
+
data[colname] = transformed_col_vals
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
### -------------------------------- ###
|
| 64 |
+
### model training ###
|
| 65 |
+
### -------------------------------- ###
|
| 66 |
+
|
| 67 |
+
# select features and predicton; automatically selects last column as prediction
|
| 68 |
+
cols = len(data.columns)
|
| 69 |
+
num_features = cols - 1
|
| 70 |
+
x = data.iloc[: , :num_features]
|
| 71 |
+
y = data.iloc[: , num_features:]
|
| 72 |
+
|
| 73 |
+
# split data into training and testing sets
|
| 74 |
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
|
| 75 |
+
|
| 76 |
+
# instantiate the model (using default parameters)
|
| 77 |
+
model = LogisticRegression()
|
| 78 |
+
model.fit(x_train, y_train.values.ravel())
|
| 79 |
+
y_pred = model.predict(x_test)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
### -------------------------------- ###
|
| 83 |
+
### article generation ###
|
| 84 |
+
### -------------------------------- ###
|
| 85 |
+
# borrow file reading function from reader.py
|
| 86 |
+
|
| 87 |
+
def get_feat():
|
| 88 |
+
feats = [abs(x) for x in model.coef_[0]]
|
| 89 |
+
max_val = max(feats)
|
| 90 |
+
idx = feats.index(max_val)
|
| 91 |
+
return data.columns[idx]
|
| 92 |
+
|
| 93 |
+
acc = str(round(metrics.accuracy_score(y_test, y_pred) * 100, 1)) + "%"
|
| 94 |
+
most_imp_feat = get_feat()
|
| 95 |
+
# info = get_article(acc, most_imp_feat)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
### ------------------------------- ###
|
| 100 |
+
### interface creation ###
|
| 101 |
+
### ------------------------------- ###
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
# predictor for generic number of features
|
| 105 |
+
def general_predictor(*args):
|
| 106 |
+
features = []
|
| 107 |
+
|
| 108 |
+
# transform categorical input
|
| 109 |
+
for colname, arg in zip(data.columns, args):
|
| 110 |
+
if (colname in cat_value_dicts):
|
| 111 |
+
features.append(cat_value_dicts[colname][arg])
|
| 112 |
+
else:
|
| 113 |
+
features.append(arg)
|
| 114 |
+
|
| 115 |
+
# predict single datapoint
|
| 116 |
+
new_input = [features]
|
| 117 |
+
result = model.predict(new_input)
|
| 118 |
+
return cat_value_dicts[final_colname][result[0]]
|
| 119 |
+
|
| 120 |
+
# add data labels to replace those lost via star-args
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
block = gr.Blocks()
|
| 124 |
+
|
| 125 |
+
with open('info.md') as f:
|
| 126 |
+
with block:
|
| 127 |
+
gr.Markdown(f.readline())
|
| 128 |
+
gr.Markdown('Take the quiz to get a personalized recommendation using AI.')
|
| 129 |
+
|
| 130 |
+
with gr.Row():
|
| 131 |
+
with gr.Box():
|
| 132 |
+
inputls = []
|
| 133 |
+
for colname in data.columns:
|
| 134 |
+
# skip last column
|
| 135 |
+
if colname == final_colname:
|
| 136 |
+
continue
|
| 137 |
+
|
| 138 |
+
# access categories dict if data is categorical
|
| 139 |
+
# otherwise, just use a number input
|
| 140 |
+
if colname in cat_value_dicts:
|
| 141 |
+
radio_options = list(cat_value_dicts[colname].keys())
|
| 142 |
+
inputls.append(gr.inputs.Dropdown(choices=radio_options, type="value", label=colname))
|
| 143 |
+
else:
|
| 144 |
+
# add numerical input
|
| 145 |
+
inputls.append(gr.inputs.Number(label=colname))
|
| 146 |
+
gr.Markdown("<br />")
|
| 147 |
+
|
| 148 |
+
submit = gr.Button("Click to see your personalized result!", variant="primary")
|
| 149 |
+
gr.Markdown("<br />")
|
| 150 |
+
output = gr.Textbox(label="Your recommendation:", placeholder="your recommendation will appear here")
|
| 151 |
+
|
| 152 |
+
submit.click(fn=general_predictor, inputs=inputls, outputs=output)
|
| 153 |
+
gr.Markdown("<br />")
|
| 154 |
+
|
| 155 |
+
with gr.Row():
|
| 156 |
+
with gr.Box():
|
| 157 |
+
gr.Markdown(f"<h3>Accuracy: </h3>{acc}")
|
| 158 |
+
with gr.Box():
|
| 159 |
+
gr.Markdown(f"<h3>Most important feature: </h3>{most_imp_feat}")
|
| 160 |
+
|
| 161 |
+
gr.Markdown("<br />")
|
| 162 |
+
|
| 163 |
+
with gr.Box():
|
| 164 |
+
gr.Markdown('''⭐ Note that model accuracy is based on the uploaded data.csv and reflects how well the AI model can give correct recommendations for <em>that dataset</em>. Model accuracy and most important feature can be helpful for understanding how the model works, but <em>should not be considered absolute facts about the real world</em>.''')
|
| 165 |
+
|
| 166 |
+
with gr.Box():
|
| 167 |
+
with open('info.md') as f:
|
| 168 |
+
f.readline()
|
| 169 |
+
gr.Markdown(f.read())
|
| 170 |
+
|
| 171 |
+
# show the interface
|
| 172 |
+
block.launch()
|