File size: 9,028 Bytes
e9706fe
 
 
 
 
de9cf64
073e6e9
e9706fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d19241
073e6e9
5d19241
073e6e9
447b0f6
e9706fe
073e6e9
 
 
 
 
 
e9706fe
 
 
8e05620
 
e9706fe
447b0f6
 
 
e9706fe
 
 
18edbb5
e9706fe
 
 
 
 
 
 
 
 
 
 
 
d5b1fb0
e9706fe
 
 
 
 
 
 
18edbb5
e9706fe
 
 
 
 
d5b1fb0
e9706fe
 
 
 
 
 
18edbb5
e9706fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073e6e9
e9706fe
073e6e9
e9706fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60f3da5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from __future__ import annotations

import os

import gradio as gr
import spaces
import torch
import torchaudio

from transformers import (
    SeamlessM4TFeatureExtractor,
    SeamlessM4TTokenizer,
    SeamlessM4Tv2ForSpeechToText,
)

from lang_list import (
    ASR_TARGET_LANGUAGE_NAMES,
    LANGUAGE_NAME_TO_CODE,
    S2ST_TARGET_LANGUAGE_NAMES,
    S2TT_TARGET_LANGUAGE_NAMES,
    T2ST_TARGET_LANGUAGE_NAMES,
    TEXT_SOURCE_LANGUAGE_NAMES,
)


DESCRIPTION = """\
### **IndicSeamless: Speech-to-Text Translation Model for Indian Languages** πŸŽ™οΈβž‘οΈπŸ“œ  

This Gradio demo showcases **IndicSeamless**, a fine-tuned **SeamlessM4T-v2-large** model for **speech-to-text translation** across **13 Indian languages and English**. Trained on **BhasaAnuvaad**, the largest open-source speech translation dataset for Indian languages, it delivers **accurate and robust translations** across diverse linguistic and acoustic conditions.  

πŸ”— **Model Checkpoint:** [ai4bharat/indic-seamless](https://huggingface.co/ai4bharat/indic-seamless)  

#### **How to Use:**  
1. **Upload or record** an audio clip in any supported Indian language.  
2. Click **"Translate"** to generate the corresponding text in the target language.  
3. View or copy the output for further use.  

πŸš€ Try it out and experience seamless speech translation for Indian languages!
"""

hf_token = os.getenv("HF_TOKEN")
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device != "cpu" else torch.float32

model = SeamlessM4Tv2ForSpeechToText.from_pretrained("ai4bharat/indic-seamless", torch_dtype=torch_dtype, token=hf_token).to(device)
processor = SeamlessM4TFeatureExtractor.from_pretrained("ai4bharat/indic-seamless", token=hf_token)
tokenizer = SeamlessM4TTokenizer.from_pretrained("ai4bharat/indic-seamless", token=hf_token)

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1" and torch.cuda.is_available()

AUDIO_SAMPLE_RATE = 16000
MAX_INPUT_AUDIO_LENGTH = 60  # in seconds
DEFAULT_TARGET_LANGUAGE = "Hindi"

def preprocess_audio(input_audio: str) -> None:
    arr, org_sr = torchaudio.load(input_audio)
    new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
    max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
    if new_arr.shape[1] > max_length:
        new_arr = new_arr[:, :max_length]
        gr.Warning(f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used.")
    torchaudio.save(input_audio, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))

@spaces.GPU
def run_s2tt(input_audio: str, source_language: str, target_language: str) -> str:
    # preprocess_audio(input_audio)
    # source_language_code = LANGUAGE_NAME_TO_CODE[source_language]
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]

    input_audio, orig_freq = torchaudio.load(input_audio)
    input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
    audio_inputs= processor(input_audio, sampling_rate=16000, return_tensors="pt").to(device=device, dtype=torch_dtype)

    text_out = model.generate(**audio_inputs, tgt_lang=target_language_code)[0].float().cpu().numpy().squeeze()

    return tokenizer.decode(text_out, clean_up_tokenization_spaces=True, skip_special_tokens=True)

@spaces.GPU
def run_asr(input_audio: str, target_language: str) -> str:
    # preprocess_audio(input_audio)
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]

    input_audio, orig_freq = torchaudio.load(input_audio)
    input_audio = torchaudio.functional.resample(input_audio, orig_freq=orig_freq, new_freq=16000)
    audio_inputs= processor(input_audio, sampling_rate=16000, return_tensors="pt").to(device=device, dtype=torch_dtype)

    text_out = model.generate(**audio_inputs, tgt_lang=target_language_code)[0].float().cpu().numpy().squeeze()

    return tokenizer.decode(text_out, clean_up_tokenization_spaces=True, skip_special_tokens=True)



with gr.Blocks() as demo_s2st:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                source_language = gr.Dropdown(
                    label="Source language",
                    choices=ASR_TARGET_LANGUAGE_NAMES,
                    value="English",
                )
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=S2ST_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Translate")
        with gr.Column():
            with gr.Group():
                output_audio = gr.Audio(
                    label="Translated speech",
                    autoplay=False,
                    streaming=False,
                    type="numpy",
                )
                output_text = gr.Textbox(label="Translated text")

with gr.Blocks() as demo_s2tt:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                source_language = gr.Dropdown(
                    label="Source language",
                    choices=ASR_TARGET_LANGUAGE_NAMES,
                    value="English",
                )
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=S2TT_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Translate")
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")

    gr.Examples(
        examples=[
            ["assets/Bengali.wav", "Bengali", "English"],
            ["assets/Gujarati.wav", "Gujarati", "Hindi"],
            ["assets/Punjabi.wav", "Punjabi", "Hindi"],

        ],
        inputs=[input_audio, source_language, target_language],
        outputs=output_text,
        fn=run_s2tt,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_s2tt,
        inputs=[input_audio, source_language, target_language],
        outputs=output_text,
        api_name="s2tt",
    )

with gr.Blocks() as demo_t2st:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_text = gr.Textbox(label="Input text")
                with gr.Row():
                    source_language = gr.Dropdown(
                        label="Source language",
                        choices=TEXT_SOURCE_LANGUAGE_NAMES,
                        value="English",
                    )
                    target_language = gr.Dropdown(
                        label="Target language",
                        choices=T2ST_TARGET_LANGUAGE_NAMES,
                        value=DEFAULT_TARGET_LANGUAGE,
                    )
            btn = gr.Button("Translate")
        with gr.Column():
            with gr.Group():
                output_audio = gr.Audio(
                    label="Translated speech",
                    autoplay=False,
                    streaming=False,
                    type="numpy",
                )
                output_text = gr.Textbox(label="Translated text")



with gr.Blocks() as demo_asr:
    with gr.Row():
        with gr.Column():
            with gr.Group():
                input_audio = gr.Audio(label="Input speech", type="filepath")
                target_language = gr.Dropdown(
                    label="Target language",
                    choices=ASR_TARGET_LANGUAGE_NAMES,
                    value=DEFAULT_TARGET_LANGUAGE,
                )
            btn = gr.Button("Transcribe")
        with gr.Column():
            output_text = gr.Textbox(label="Transcribed text")

    gr.Examples(
        examples=[
            ["assets/Bengali.wav", "Bengali", "English"],
            ["assets/Gujarati.wav", "Gujarati", "Hindi"],
            ["assets/Punjabi.wav", "Punjabi", "Hindi"],

        ],
        inputs=[input_audio, target_language],
        outputs=output_text,
        fn=run_asr,
        cache_examples=CACHE_EXAMPLES,
        api_name=False,
    )

    btn.click(
        fn=run_asr,
        inputs=[input_audio, target_language],
        outputs=output_text,
        api_name="asr",
    )


with gr.Blocks(css="style.css") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(
        value="Duplicate Space for private use",
        elem_id="duplicate-button",
        visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    )

    with gr.Tabs():
        # with gr.Tab(label="S2ST"):
        #     demo_s2st.render()
        with gr.Tab(label="S2TT"):
            demo_s2tt.render()
        # with gr.Tab(label="T2ST"):
        #     demo_t2st.render()
        # with gr.Tab(label="T2TT"):
        #     demo_t2tt.render()
        with gr.Tab(label="ASR"):
            demo_asr.render()



demo.launch(share=True)