Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
#from googletrans import Translator | |
#translator = Translator() | |
tokenizer = GPT2Tokenizer.from_pretrained("sberbank-ai/mGPT-armenian") | |
model = GPT2LMHeadModel.from_pretrained("sberbank-ai/mGPT-armenian") | |
#model.cuda() | |
#model.eval() | |
description = "Multilingual generation with mGPT" | |
title = "Generate your own example" | |
examples = [["""Երեւանից ծրագրավորողները ներկայացրել են նոր գործարք: Այն կոչվում է"""]]#, "Նորություններ. Բրազիլացի գիտնականները հայտնաբերել են Ուութլանդի արեւմուտքում ապրող գաճաճ միաեղջյուրների հազվագյուտ տեսակին:" | |
article = ( | |
"<p style='text-align: center'>" | |
"<a href='https://github.com/ai-forever/mgpt'>GitHub</a> " | |
"</p>" | |
) | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
fp16 = device != 'cpu' | |
model.to(device).eval() | |
def transl(text, src='en', dest='hy' ): | |
return translator.translate(text, src=src, dest=dest).text | |
def generate(prompt: str): | |
#print(prompt) | |
#print(length, type(length)) | |
#length = int(length) | |
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device) | |
out = model.generate(input_ids, | |
min_length=200, | |
max_length=700, | |
top_p=0.95, | |
top_k=0, | |
temperature=0.9, | |
no_repeat_ngram_size=5 | |
) | |
generated_text = list(map(tokenizer.decode, out))[0] | |
return generated_text #+ '\n\n'+transl(generated_text, src='hy', dest='en') | |
#contexto = gr.inputs.Textbox(lines=10, placeholder="Write your text here") | |
#length = gr.inputs.Slider(200, 1000) | |
interface = gr.Interface.load("huggingface/sberbank-ai/mGPT-armenian", | |
description=description, | |
examples=examples, | |
fn=generate, | |
inputs="text",#[contexto,length],# | |
outputs='text', | |
thumbnail = 'https://habrastorage.org/r/w1560/getpro/habr/upload_files/26a/fa1/3e1/26afa13e1d1a56f54c7b0356761af7b8.png', | |
theme = "peach", | |
article = article | |
) | |
interface.launch(enable_queue=True) | |