from fastai.vision.all import * import gradio as gr # import pathlib # temp = pathlib.PosixPath # pathlib.PosixPath = pathlib.WindowsPath model = load_learner('models/sport-recognizer-v3.pkl') equipment_labels = model.dls.vocab def recognize_image(image): pred, idx, probs = model.predict(image) return dict(zip(equipment_labels, map(float, probs))) #!export image = gr.inputs.Image(shape=(192,192)) label = gr.outputs.Label(num_top_classes=5) examples = [ 'test_images/unknown_00.jpg', 'test_images/unknown_01.jpg', 'test_images/unknown_02.jpg', 'test_images/unknown_03.jpg', 'test_images/unknown_04.jpg', 'test_images/unknown_05.jpg' ] iface = gr.Interface(fn=recognize_image, inputs=image, outputs=label, examples=examples) iface.launch(inline=False, share=True)