Spaces:
No application file
No application file
Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,5 @@ pinned: false
|
|
8 |
sdk_version: 1.41.1
|
9 |
---
|
10 |
|
11 |
-
Most existing robot learning benchmarks struggle to address real-world challenges caused by low-quality data and limited sensing capabilities, typically limited to short-horizon tasks within controlled environments.
|
12 |
-
|
13 |
-
With 1M+ trajectories from 100 robots, AgiBot World spans 100+ real-world scenarios across five target domains, tackling fine-grained manipulation, tool usage, and multi-robot collaboration. Cutting-edge multimodal hardware features visual tactile sensors, durable 6-DoF dexterous hands, and mobile dual-arm robots with whole-body control, supporting research in imitation learning, multi-agent collaboration, and more.
|
14 |
-
AgiBot World aspires to transform large-scale robot learning and advance scalable robotic systems for production. This open-source platform invites researchers and practitioners to collaboratively shape the future of Embodied AI.
|
|
|
8 |
sdk_version: 1.41.1
|
9 |
---
|
10 |
|
11 |
+
Most existing robot learning benchmarks struggle to address real-world challenges caused by low-quality data and limited sensing capabilities, typically limited to short-horizon tasks within controlled environments. Introducing AgiBot World, the first large-scale robotic learning dataset designed to advance multi-purpose humanoid robotic policies. It is to be accompanied by foundation models, benchmarks, and an ecosystem to democratize access to high-quality robot data for the academic community and the industry, paving the path towards the "ImageNet Moment" for Embodied AI. The AgiBot World Beta dataset contains 1M+ trajectories, with a total duration of 2,976.4 hours, covering 217 specific tasks, 87 skills, 3,000+ different objects, and 100+ real-world scenarios across five target domains, tackling fine-grained manipulation, tool usage, and multi-robot collaboration. Cutting-edge multimodal hardware features visual tactile sensors, durable 6-DoF dexterous hands, and mobile dual-arm robots with whole-body control, supporting research in imitation learning, multi-agent collaboration, and more. AgiBot World aspires to transform large-scale robot learning and advance scalable robotic systems for production. This open-source platform invites researchers and practitioners to collaboratively shape the future of Embodied AI.
|
12 |
+
The AgiBot World Alpha dataset is a subset of the Beta dataset, maintaining consistency in content and aligning with the Beta dataset's standards, ensuring that users working with the Alpha dataset have access to a representative sample of the broader Beta dataset. For a detailed comparison between the Alpha and Beta datasets, please refer to [docs.google.com](https://docs.google.com/spreadsheets/d/1GWMFHYo3UJADS7kkScoJ5ObbQfAFasPuaeC7TJUr1Cc/edit?gid=429909968#gid=429909968)
|
|
|
|