agentsvalley commited on
Commit
a3d0df3
·
verified ·
1 Parent(s): 5ef1f75

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +38 -21
app.py CHANGED
@@ -1,40 +1,57 @@
1
  import streamlit as st
2
  from transformers import pipeline
3
  from PIL import Image
 
 
4
 
5
- # Load an animal classification model
6
  animal_pipeline = pipeline(task="image-classification", model="microsoft/resnet-50")
7
 
8
- st.title("Animal Species Classifier 🐾")
9
 
10
- # Upload the animal image
11
- file_name = st.file_uploader("Upload an animal image")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  if file_name is not None:
14
- col1, col2 = st.columns(2)
15
 
16
- # Display the uploaded image
17
  image = Image.open(file_name)
18
- col1.image(image, use_container_width=True, caption="Uploaded Image")
 
 
 
 
 
19
 
20
- # Make predictions
21
  predictions = animal_pipeline(image)
22
 
23
- # Display predictions and habitat information
24
- col2.header("Animal Predictions 🐾")
25
- habitat_info = {
26
- "tiger": "Forests, grasslands, and mangroves in Asia.",
27
- "elephant": "Grasslands and forests in Africa and Asia.",
28
- "penguin": "Antarctic and coastal areas in the Southern Hemisphere.",
29
- "kangaroo": "Open plains, woodlands, and savannas in Australia.",
30
- "panda": "Bamboo forests in China.",
31
- }
32
 
33
  for p in predictions[:3]:
34
  species = p['label'].lower()
35
  confidence = round(p['score'] * 100, 1)
36
  col2.subheader(f"**{species.capitalize()}**: {confidence}%")
37
-
38
- # Show habitat info if available
39
- habitat = habitat_info.get(species, "Habitat information not available.")
40
- col2.write(f"**Habitat:** {habitat}")
 
 
 
 
 
 
 
 
1
  import streamlit as st
2
  from transformers import pipeline
3
  from PIL import Image
4
+ from streamlit_extras.add_vertical_space import add_vertical_space
5
+
6
 
 
7
  animal_pipeline = pipeline(task="image-classification", model="microsoft/resnet-50")
8
 
 
9
 
10
+ st.set_page_config(page_title="Animal Species Identifier🐾", layout="wide", page_icon="🐾")
11
+
12
+ st.markdown(
13
+ """
14
+ <div style="text-align: center; padding: 10px;">
15
+ <h1 style="color: #2D6A4F; font-size: 50px;">Animal Species Identifier 🌸</h1>
16
+ <p style="color: #40916C; font-size: 20px;">Snap it, upload it, and identify!</p>
17
+ </div>
18
+ """,
19
+ unsafe_allow_html=True
20
+ )
21
+
22
+
23
+ #st.title("Animal Species Classifier 🐾")
24
+
25
+ file_name = st.file_uploader("Upload an animal image 📸")
26
+
27
+ add_vertical_space(1)
28
 
29
  if file_name is not None:
30
+ col1, col2 = st.columns([1, 2])
31
 
 
32
  image = Image.open(file_name)
33
+ col1.image(
34
+ image,
35
+ use_container_width=True,
36
+ caption="Uploaded Image",
37
+ output_format="auto"
38
+ )
39
 
 
40
  predictions = animal_pipeline(image)
41
 
 
 
 
 
 
 
 
 
 
42
 
43
  for p in predictions[:3]:
44
  species = p['label'].lower()
45
  confidence = round(p['score'] * 100, 1)
46
  col2.subheader(f"**{species.capitalize()}**: {confidence}%")
47
+
48
+ st.markdown(
49
+ """
50
+ <hr style="border-top: 3px solid #40916C;">
51
+ <div style="text-align: center;">
52
+ <p style="color: #1B4332;">Powered by AgentsValley 🌿</p>
53
+ </div>
54
+ """,
55
+ unsafe_allow_html=True
56
+ )
57
+