Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import os | |
from datetime import datetime | |
import random | |
import requests | |
from io import BytesIO | |
from datetime import date | |
import tempfile | |
from PIL import Image, ImageDraw, ImageFont | |
from huggingface_hub import upload_file | |
import pandas as pd | |
from huggingface_hub import HfApi, hf_hub_download, Repository | |
from huggingface_hub.repocard import metadata_load | |
import gradio as gr | |
from datasets import load_dataset, Dataset | |
from huggingface_hub import whoami | |
import asyncio | |
from functools import partial | |
EXAM_DATASET_ID = os.getenv("EXAM_DATASET_ID") or "agents-course/unit_1_quiz" | |
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 1 | |
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.8 | |
CERTIFYING_ORG_LINKEDIN_ID = os.getenv("CERTIFYING_ORG_LINKEDIN_ID", "000000") | |
COURSE_TITLE = os.getenv("COURSE_TITLE", "AI Agents Fundamentals") | |
ds = load_dataset(EXAM_DATASET_ID, split="train") | |
DATASET_REPO_URL = "https://huggingface.co/datasets/agents-course/certificates" | |
# Convert dataset to a list of dicts and randomly sort | |
quiz_data = ds.to_pandas().to_dict("records") | |
random.shuffle(quiz_data) | |
# Limit to max questions if specified | |
if EXAM_MAX_QUESTIONS: | |
quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)] | |
def on_user_logged_in(token: gr.OAuthToken | None): | |
""" | |
If the user has a valid token, show Start button. | |
Otherwise, keep the login button visible. | |
""" | |
if token is not None: | |
return [ | |
gr.update(visible=False), # login_btn | |
gr.update(visible=True), # start_btn | |
gr.update(visible=False), # next_btn | |
gr.update(visible=False), # submit_btn | |
"", # question_text | |
gr.update(choices=[], visible=False), # radio_choices | |
"Click 'Start' to begin the quiz", # status_text | |
0, # question_idx | |
[], # user_answers | |
gr.update(visible=False), # certificate_img | |
gr.update(visible=False), # linkedin_btn | |
token, # user_token | |
] | |
else: | |
return [ | |
gr.update(visible=True), # login_btn | |
gr.update(visible=False), # start_btn | |
gr.update(visible=False), # next_btn | |
gr.update(visible=False), # submit_btn | |
"", # question_text | |
gr.update(choices=[], visible=False), # radio_choices | |
"", # status_text | |
0, # question_idx | |
[], # user_answers | |
gr.update(visible=False), # certificate_img | |
gr.update(visible=False), # linkedin_btn | |
None, # user_token | |
] | |
def generate_certificate(name: str, profile_url: str): | |
"""Generate certificate image and PDF.""" | |
certificate_path = os.path.join( | |
os.path.dirname(__file__), "templates", "certificate.png" | |
) | |
im = Image.open(certificate_path) | |
d = ImageDraw.Draw(im) | |
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100) | |
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48) | |
name = name.title() | |
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font) | |
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font) | |
pdf = im.convert("RGB") | |
pdf.save("certificate.pdf") | |
return im, "certificate.pdf" | |
def create_linkedin_button(username: str, cert_url: str | None) -> str: | |
"""Create LinkedIn 'Add to Profile' button HTML.""" | |
current_year = date.today().year | |
current_month = date.today().month | |
# Use the dataset certificate URL if available, otherwise fallback to default | |
certificate_url = cert_url or "https://huggingface.co/agents-course-finishers" | |
linkedin_params = { | |
"startTask": "CERTIFICATION_NAME", | |
"name": COURSE_TITLE, | |
"organizationName": "Hugging Face", | |
"organizationId": CERTIFYING_ORG_LINKEDIN_ID, | |
"organizationIdissueYear": str(current_year), | |
"issueMonth": str(current_month), | |
"certUrl": certificate_url, | |
"certId": username, # Using username as cert ID | |
} | |
# Build the LinkedIn button URL | |
base_url = "https://www.linkedin.com/profile/add?" | |
params = "&".join( | |
f"{k}={requests.utils.quote(v)}" for k, v in linkedin_params.items() | |
) | |
button_url = base_url + params | |
message = f""" | |
<a href="{button_url}" target="_blank" style="display: block; margin-top: 20px; text-align: center;"> | |
<img src="https://download.linkedin.com/desktop/add2profile/buttons/en_US.png" | |
alt="LinkedIn Add to Profile button"> | |
</a> | |
""" | |
return message | |
async def upload_certificate_to_hub(username: str, certificate_img) -> str: | |
"""Upload certificate to the dataset hub and return the URL asynchronously.""" | |
# Save image to temporary file | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp: | |
certificate_img.save(tmp.name) | |
try: | |
# Run upload in a thread pool since upload_file is blocking | |
loop = asyncio.get_event_loop() | |
upload_func = partial( | |
upload_file, | |
path_or_fileobj=tmp.name, | |
path_in_repo=f"certificates/{username}/{date.today()}.png", | |
repo_id="agents-course/certificates", | |
repo_type="dataset", | |
token=os.getenv("HF_TOKEN"), | |
) | |
await loop.run_in_executor(None, upload_func) | |
# Construct the URL to the image | |
cert_url = ( | |
f"https://huggingface.co/datasets/agents-course/certificates/" | |
f"resolve/main/certificates/{username}/{date.today()}.png" | |
) | |
# Clean up temp file | |
os.unlink(tmp.name) | |
return cert_url | |
except Exception as e: | |
print(f"Error uploading certificate: {e}") | |
os.unlink(tmp.name) | |
return None | |
async def push_results_to_hub( | |
user_answers, | |
custom_name: str | None, | |
token: gr.OAuthToken | None, | |
profile: gr.OAuthProfile | None, | |
): | |
"""Handle quiz completion and certificate generation.""" | |
if token is None or profile is None: | |
gr.Warning("Please log in to Hugging Face before submitting!") | |
return ( | |
gr.update(visible=True, value="Please login first"), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), # hide custom name input | |
) | |
# Calculate grade | |
correct_count = sum(1 for answer in user_answers if answer["is_correct"]) | |
total_questions = len(user_answers) | |
grade = correct_count / total_questions if total_questions > 0 else 0 | |
if grade < float(EXAM_PASSING_SCORE): | |
return ( | |
gr.update(visible=True, value=f"You scored {grade:.1%}..."), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), # hide custom name input | |
) | |
try: | |
# Use custom name if provided, otherwise use profile name | |
name = ( | |
custom_name.strip() if custom_name and custom_name.strip() else profile.name | |
) | |
# Generate certificate | |
certificate_img, _ = generate_certificate( | |
name=name, profile_url=profile.picture | |
) | |
# Start certificate upload asynchronously | |
gr.Info("Uploading your certificate...") | |
cert_url = await upload_certificate_to_hub(profile.username, certificate_img) | |
if cert_url is None: | |
gr.Warning("Certificate upload failed, but you still passed!") | |
cert_url = "https://huggingface.co/agents-course" | |
# Create LinkedIn button | |
linkedin_button = create_linkedin_button(profile.username, cert_url) | |
result_message = f""" | |
🎉 Congratulations! You passed with a score of {grade:.1%}! | |
{linkedin_button} | |
""" | |
return ( | |
gr.update(visible=True, value=result_message), | |
gr.update(visible=True, value=certificate_img), | |
gr.update(visible=True), | |
gr.update(visible=True), # show custom name input | |
) | |
except Exception as e: | |
print(f"Error generating certificate: {e}") | |
return ( | |
gr.update(visible=True, value=f"🎉 You passed with {grade:.1%}!"), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), # hide custom name input | |
) | |
def handle_quiz( | |
question_idx, | |
user_answers, | |
selected_answer, | |
is_start, | |
token: gr.OAuthToken | None, | |
profile: gr.OAuthProfile | None, | |
): | |
"""Handle quiz state transitions and store answers""" | |
if token is None or profile is None: | |
gr.Warning("Please log in to Hugging Face before starting the quiz!") | |
return [ | |
"", # question_text | |
gr.update(choices=[], visible=False), # radio choices | |
"Please login first", # status_text | |
question_idx, # question_idx | |
user_answers, # user_answers | |
gr.update(visible=True), # start button | |
gr.update(visible=False), # next button | |
gr.update(visible=False), # submit button | |
gr.update(visible=False), # certificate image | |
gr.update(visible=False), # linkedin button | |
] | |
if not is_start and question_idx < len(quiz_data): | |
current_q = quiz_data[question_idx] | |
correct_reference = current_q["correct_answer"] | |
correct_reference = f"answer_{correct_reference}".lower() | |
is_correct = selected_answer == current_q[correct_reference] | |
user_answers.append( | |
{ | |
"question": current_q["question"], | |
"selected_answer": selected_answer, | |
"correct_answer": current_q[correct_reference], | |
"is_correct": is_correct, | |
"correct_reference": correct_reference, | |
} | |
) | |
question_idx += 1 | |
if question_idx >= len(quiz_data): | |
correct_count = sum(1 for answer in user_answers if answer["is_correct"]) | |
grade = correct_count / len(user_answers) | |
results_text = ( | |
f"**Quiz Complete!**\n\n" | |
f"Your score: {grade:.1%}\n" | |
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n" | |
) | |
has_passed = grade >= float(EXAM_PASSING_SCORE) | |
return [ | |
"", # question_text | |
gr.update(choices=[], visible=False), # radio choices | |
f"{'🎉 Passed! Click now on 🎓 Get your certificate!' if has_passed else '❌ Did not pass'}", # status_text | |
question_idx, # question_idx | |
user_answers, # user_answers | |
gr.update(visible=False), # start button | |
gr.update(visible=False), # next button | |
gr.update( | |
visible=True, | |
value=f"🎓 Get your certificate" if has_passed else "❌ Did not pass", | |
interactive=has_passed, | |
), # submit button | |
gr.update(visible=False), # certificate image | |
gr.update(visible=False), # linkedin button | |
] | |
# Show next question | |
q = quiz_data[question_idx] | |
return [ | |
f"## Question {question_idx + 1} \n### {q['question']}", # question_text | |
gr.update( # radio choices | |
choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]], | |
value=None, | |
visible=True, | |
), | |
"Select an answer and click 'Next' to continue.", # status_text | |
question_idx, # question_idx | |
user_answers, # user_answers | |
gr.update(visible=False), # start button | |
gr.update(visible=True), # next button | |
gr.update(visible=False), # submit button | |
gr.update(visible=False), # certificate image | |
gr.update(visible=False), # linkedin button | |
] | |
def success_message(response): | |
# response is whatever push_results_to_hub returned | |
return f"{response}\n\n**Success!**" | |
with gr.Blocks() as demo: | |
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}" | |
# State variables | |
question_idx = gr.State(value=0) | |
user_answers = gr.State(value=[]) | |
user_token = gr.State(value=None) | |
with gr.Row(variant="compact"): | |
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz") | |
with gr.Row(variant="compact"): | |
gr.Markdown( | |
"- Log in first, then click 'Start' to begin. \n- Answer each question, click 'Next' \n- click 'Submit' to publish your results to the Hugging Face Hub." | |
) | |
with gr.Row(variant="panel"): | |
question_text = gr.Markdown("") | |
radio_choices = gr.Radio( | |
choices=[], label="Your Answer", scale=1, visible=False | |
) | |
with gr.Row(variant="compact"): | |
status_text = gr.Markdown("") | |
certificate_img = gr.Image(type="pil", visible=False) | |
linkedin_btn = gr.HTML(visible=False) | |
with gr.Row(variant="compact"): | |
login_btn = gr.LoginButton(visible=True) | |
start_btn = gr.Button("Start ⏭️", visible=True) | |
next_btn = gr.Button("Next ⏭️", visible=False) | |
submit_btn = gr.Button("🎓 Get your certificate", visible=False) | |
with gr.Row(variant="panel"): | |
custom_name_input = gr.Textbox( | |
label="Custom Name for Certificate", | |
placeholder="Enter name as you want it to appear on the certificate", | |
info="Leave empty to use your Hugging Face profile name", | |
visible=False, | |
value=None, | |
) | |
# Wire up the event handlers | |
login_btn.click( | |
fn=on_user_logged_in, | |
inputs=None, | |
outputs=[ | |
login_btn, | |
start_btn, | |
next_btn, | |
submit_btn, | |
question_text, | |
radio_choices, | |
status_text, | |
question_idx, | |
user_answers, | |
certificate_img, | |
linkedin_btn, | |
user_token, | |
], | |
) | |
start_btn.click( | |
fn=handle_quiz, | |
inputs=[question_idx, user_answers, gr.State(""), gr.State(True)], | |
outputs=[ | |
question_text, | |
radio_choices, | |
status_text, | |
question_idx, | |
user_answers, | |
start_btn, | |
next_btn, | |
submit_btn, | |
certificate_img, | |
linkedin_btn, | |
], | |
) | |
next_btn.click( | |
fn=handle_quiz, | |
inputs=[question_idx, user_answers, radio_choices, gr.State(False)], | |
outputs=[ | |
question_text, | |
radio_choices, | |
status_text, | |
question_idx, | |
user_answers, | |
start_btn, | |
next_btn, | |
submit_btn, | |
certificate_img, | |
linkedin_btn, | |
], | |
) | |
submit_btn.click( | |
fn=push_results_to_hub, | |
inputs=[ | |
user_answers, | |
custom_name_input, | |
], | |
outputs=[ | |
status_text, | |
certificate_img, | |
linkedin_btn, | |
custom_name_input, | |
], | |
) | |
custom_name_input.submit( | |
fn=push_results_to_hub, | |
inputs=[user_answers, custom_name_input], | |
outputs=[status_text, certificate_img, linkedin_btn, custom_name_input], | |
) | |
if __name__ == "__main__": | |
# Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN | |
# environment variable for the login to work locally. | |
demo.queue() # Enable queuing for async operations | |
demo.launch() | |