unit_1_quiz / app.py
burtenshaw
add custom name functionality
0a4e0d7
import os
from datetime import datetime
import random
import requests
from io import BytesIO
from datetime import date
import tempfile
from PIL import Image, ImageDraw, ImageFont
from huggingface_hub import upload_file
import pandas as pd
from huggingface_hub import HfApi, hf_hub_download, Repository
from huggingface_hub.repocard import metadata_load
import gradio as gr
from datasets import load_dataset, Dataset
from huggingface_hub import whoami
import asyncio
from functools import partial
EXAM_DATASET_ID = os.getenv("EXAM_DATASET_ID") or "agents-course/unit_1_quiz"
EXAM_MAX_QUESTIONS = os.getenv("EXAM_MAX_QUESTIONS") or 1
EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.8
CERTIFYING_ORG_LINKEDIN_ID = os.getenv("CERTIFYING_ORG_LINKEDIN_ID", "000000")
COURSE_TITLE = os.getenv("COURSE_TITLE", "AI Agents Fundamentals")
ds = load_dataset(EXAM_DATASET_ID, split="train")
DATASET_REPO_URL = "https://huggingface.co/datasets/agents-course/certificates"
# Convert dataset to a list of dicts and randomly sort
quiz_data = ds.to_pandas().to_dict("records")
random.shuffle(quiz_data)
# Limit to max questions if specified
if EXAM_MAX_QUESTIONS:
quiz_data = quiz_data[: int(EXAM_MAX_QUESTIONS)]
def on_user_logged_in(token: gr.OAuthToken | None):
"""
If the user has a valid token, show Start button.
Otherwise, keep the login button visible.
"""
if token is not None:
return [
gr.update(visible=False), # login_btn
gr.update(visible=True), # start_btn
gr.update(visible=False), # next_btn
gr.update(visible=False), # submit_btn
"", # question_text
gr.update(choices=[], visible=False), # radio_choices
"Click 'Start' to begin the quiz", # status_text
0, # question_idx
[], # user_answers
gr.update(visible=False), # certificate_img
gr.update(visible=False), # linkedin_btn
token, # user_token
]
else:
return [
gr.update(visible=True), # login_btn
gr.update(visible=False), # start_btn
gr.update(visible=False), # next_btn
gr.update(visible=False), # submit_btn
"", # question_text
gr.update(choices=[], visible=False), # radio_choices
"", # status_text
0, # question_idx
[], # user_answers
gr.update(visible=False), # certificate_img
gr.update(visible=False), # linkedin_btn
None, # user_token
]
def generate_certificate(name: str, profile_url: str):
"""Generate certificate image and PDF."""
certificate_path = os.path.join(
os.path.dirname(__file__), "templates", "certificate.png"
)
im = Image.open(certificate_path)
d = ImageDraw.Draw(im)
name_font = ImageFont.truetype("Quattrocento-Regular.ttf", 100)
date_font = ImageFont.truetype("Quattrocento-Regular.ttf", 48)
name = name.title()
d.text((1000, 740), name, fill="black", anchor="mm", font=name_font)
d.text((1480, 1170), str(date.today()), fill="black", anchor="mm", font=date_font)
pdf = im.convert("RGB")
pdf.save("certificate.pdf")
return im, "certificate.pdf"
def create_linkedin_button(username: str, cert_url: str | None) -> str:
"""Create LinkedIn 'Add to Profile' button HTML."""
current_year = date.today().year
current_month = date.today().month
# Use the dataset certificate URL if available, otherwise fallback to default
certificate_url = cert_url or "https://huggingface.co/agents-course-finishers"
linkedin_params = {
"startTask": "CERTIFICATION_NAME",
"name": COURSE_TITLE,
"organizationName": "Hugging Face",
"organizationId": CERTIFYING_ORG_LINKEDIN_ID,
"organizationIdissueYear": str(current_year),
"issueMonth": str(current_month),
"certUrl": certificate_url,
"certId": username, # Using username as cert ID
}
# Build the LinkedIn button URL
base_url = "https://www.linkedin.com/profile/add?"
params = "&".join(
f"{k}={requests.utils.quote(v)}" for k, v in linkedin_params.items()
)
button_url = base_url + params
message = f"""
<a href="{button_url}" target="_blank" style="display: block; margin-top: 20px; text-align: center;">
<img src="https://download.linkedin.com/desktop/add2profile/buttons/en_US.png"
alt="LinkedIn Add to Profile button">
</a>
"""
return message
async def upload_certificate_to_hub(username: str, certificate_img) -> str:
"""Upload certificate to the dataset hub and return the URL asynchronously."""
# Save image to temporary file
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
certificate_img.save(tmp.name)
try:
# Run upload in a thread pool since upload_file is blocking
loop = asyncio.get_event_loop()
upload_func = partial(
upload_file,
path_or_fileobj=tmp.name,
path_in_repo=f"certificates/{username}/{date.today()}.png",
repo_id="agents-course/certificates",
repo_type="dataset",
token=os.getenv("HF_TOKEN"),
)
await loop.run_in_executor(None, upload_func)
# Construct the URL to the image
cert_url = (
f"https://huggingface.co/datasets/agents-course/certificates/"
f"resolve/main/certificates/{username}/{date.today()}.png"
)
# Clean up temp file
os.unlink(tmp.name)
return cert_url
except Exception as e:
print(f"Error uploading certificate: {e}")
os.unlink(tmp.name)
return None
async def push_results_to_hub(
user_answers,
custom_name: str | None,
token: gr.OAuthToken | None,
profile: gr.OAuthProfile | None,
):
"""Handle quiz completion and certificate generation."""
if token is None or profile is None:
gr.Warning("Please log in to Hugging Face before submitting!")
return (
gr.update(visible=True, value="Please login first"),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False), # hide custom name input
)
# Calculate grade
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
total_questions = len(user_answers)
grade = correct_count / total_questions if total_questions > 0 else 0
if grade < float(EXAM_PASSING_SCORE):
return (
gr.update(visible=True, value=f"You scored {grade:.1%}..."),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False), # hide custom name input
)
try:
# Use custom name if provided, otherwise use profile name
name = (
custom_name.strip() if custom_name and custom_name.strip() else profile.name
)
# Generate certificate
certificate_img, _ = generate_certificate(
name=name, profile_url=profile.picture
)
# Start certificate upload asynchronously
gr.Info("Uploading your certificate...")
cert_url = await upload_certificate_to_hub(profile.username, certificate_img)
if cert_url is None:
gr.Warning("Certificate upload failed, but you still passed!")
cert_url = "https://huggingface.co/agents-course"
# Create LinkedIn button
linkedin_button = create_linkedin_button(profile.username, cert_url)
result_message = f"""
🎉 Congratulations! You passed with a score of {grade:.1%}!
{linkedin_button}
"""
return (
gr.update(visible=True, value=result_message),
gr.update(visible=True, value=certificate_img),
gr.update(visible=True),
gr.update(visible=True), # show custom name input
)
except Exception as e:
print(f"Error generating certificate: {e}")
return (
gr.update(visible=True, value=f"🎉 You passed with {grade:.1%}!"),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False), # hide custom name input
)
def handle_quiz(
question_idx,
user_answers,
selected_answer,
is_start,
token: gr.OAuthToken | None,
profile: gr.OAuthProfile | None,
):
"""Handle quiz state transitions and store answers"""
if token is None or profile is None:
gr.Warning("Please log in to Hugging Face before starting the quiz!")
return [
"", # question_text
gr.update(choices=[], visible=False), # radio choices
"Please login first", # status_text
question_idx, # question_idx
user_answers, # user_answers
gr.update(visible=True), # start button
gr.update(visible=False), # next button
gr.update(visible=False), # submit button
gr.update(visible=False), # certificate image
gr.update(visible=False), # linkedin button
]
if not is_start and question_idx < len(quiz_data):
current_q = quiz_data[question_idx]
correct_reference = current_q["correct_answer"]
correct_reference = f"answer_{correct_reference}".lower()
is_correct = selected_answer == current_q[correct_reference]
user_answers.append(
{
"question": current_q["question"],
"selected_answer": selected_answer,
"correct_answer": current_q[correct_reference],
"is_correct": is_correct,
"correct_reference": correct_reference,
}
)
question_idx += 1
if question_idx >= len(quiz_data):
correct_count = sum(1 for answer in user_answers if answer["is_correct"])
grade = correct_count / len(user_answers)
results_text = (
f"**Quiz Complete!**\n\n"
f"Your score: {grade:.1%}\n"
f"Passing score: {float(EXAM_PASSING_SCORE):.1%}\n\n"
)
has_passed = grade >= float(EXAM_PASSING_SCORE)
return [
"", # question_text
gr.update(choices=[], visible=False), # radio choices
f"{'🎉 Passed! Click now on 🎓 Get your certificate!' if has_passed else '❌ Did not pass'}", # status_text
question_idx, # question_idx
user_answers, # user_answers
gr.update(visible=False), # start button
gr.update(visible=False), # next button
gr.update(
visible=True,
value=f"🎓 Get your certificate" if has_passed else "❌ Did not pass",
interactive=has_passed,
), # submit button
gr.update(visible=False), # certificate image
gr.update(visible=False), # linkedin button
]
# Show next question
q = quiz_data[question_idx]
return [
f"## Question {question_idx + 1} \n### {q['question']}", # question_text
gr.update( # radio choices
choices=[q["answer_a"], q["answer_b"], q["answer_c"], q["answer_d"]],
value=None,
visible=True,
),
"Select an answer and click 'Next' to continue.", # status_text
question_idx, # question_idx
user_answers, # user_answers
gr.update(visible=False), # start button
gr.update(visible=True), # next button
gr.update(visible=False), # submit button
gr.update(visible=False), # certificate image
gr.update(visible=False), # linkedin button
]
def success_message(response):
# response is whatever push_results_to_hub returned
return f"{response}\n\n**Success!**"
with gr.Blocks() as demo:
demo.title = f"Dataset Quiz for {EXAM_DATASET_ID}"
# State variables
question_idx = gr.State(value=0)
user_answers = gr.State(value=[])
user_token = gr.State(value=None)
with gr.Row(variant="compact"):
gr.Markdown(f"## Welcome to the {EXAM_DATASET_ID} Quiz")
with gr.Row(variant="compact"):
gr.Markdown(
"- Log in first, then click 'Start' to begin. \n- Answer each question, click 'Next' \n- click 'Submit' to publish your results to the Hugging Face Hub."
)
with gr.Row(variant="panel"):
question_text = gr.Markdown("")
radio_choices = gr.Radio(
choices=[], label="Your Answer", scale=1, visible=False
)
with gr.Row(variant="compact"):
status_text = gr.Markdown("")
certificate_img = gr.Image(type="pil", visible=False)
linkedin_btn = gr.HTML(visible=False)
with gr.Row(variant="compact"):
login_btn = gr.LoginButton(visible=True)
start_btn = gr.Button("Start ⏭️", visible=True)
next_btn = gr.Button("Next ⏭️", visible=False)
submit_btn = gr.Button("🎓 Get your certificate", visible=False)
with gr.Row(variant="panel"):
custom_name_input = gr.Textbox(
label="Custom Name for Certificate",
placeholder="Enter name as you want it to appear on the certificate",
info="Leave empty to use your Hugging Face profile name",
visible=False,
value=None,
)
# Wire up the event handlers
login_btn.click(
fn=on_user_logged_in,
inputs=None,
outputs=[
login_btn,
start_btn,
next_btn,
submit_btn,
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
certificate_img,
linkedin_btn,
user_token,
],
)
start_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, gr.State(""), gr.State(True)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
next_btn,
submit_btn,
certificate_img,
linkedin_btn,
],
)
next_btn.click(
fn=handle_quiz,
inputs=[question_idx, user_answers, radio_choices, gr.State(False)],
outputs=[
question_text,
radio_choices,
status_text,
question_idx,
user_answers,
start_btn,
next_btn,
submit_btn,
certificate_img,
linkedin_btn,
],
)
submit_btn.click(
fn=push_results_to_hub,
inputs=[
user_answers,
custom_name_input,
],
outputs=[
status_text,
certificate_img,
linkedin_btn,
custom_name_input,
],
)
custom_name_input.submit(
fn=push_results_to_hub,
inputs=[user_answers, custom_name_input],
outputs=[status_text, certificate_img, linkedin_btn, custom_name_input],
)
if __name__ == "__main__":
# Note: If testing locally, you'll need to run `huggingface-cli login` or set HF_TOKEN
# environment variable for the login to work locally.
demo.queue() # Enable queuing for async operations
demo.launch()