Spaces:
Sleeping
Sleeping
File size: 89,090 Bytes
eba05ad b3d2534 eba05ad 4e109a2 4855afa eba05ad b3d2534 4855afa d1eab08 a23fc7c 4855afa b3d2534 4855afa a23fc7c 4855afa b3d2534 4855afa b3d2534 4855afa eba05ad 03e54bd 495ce2c eba05ad 3622597 495ce2c eba05ad 03e54bd 495ce2c eba05ad 03e54bd 495ce2c 03e54bd 495ce2c 03e54bd 495ce2c eba05ad 495ce2c eba05ad 03e54bd 495ce2c 03e54bd eba05ad 03e54bd eba05ad 03e54bd eba05ad 495ce2c eba05ad 3622597 eba05ad 495ce2c eba05ad 03e54bd eba05ad 495ce2c eba05ad 03e54bd eba05ad 495ce2c 03e54bd 2cb9bff 03e54bd 495ce2c eba05ad 495ce2c eba05ad 03e54bd 495ce2c 03e54bd eba05ad b3d2534 495ce2c eba05ad b3d2534 495ce2c 4855afa b3d2534 4855afa eba05ad b3d2534 03e54bd eba05ad b3d2534 eba05ad a23fc7c b3d2534 eba05ad b3d2534 eba05ad 4855afa 03e54bd 4855afa a23fc7c b3d2534 495ce2c eba05ad 495ce2c b3d2534 03e54bd b3d2534 a23fc7c b3d2534 eba05ad b3d2534 a23fc7c 03e54bd b3d2534 03e54bd b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c eba05ad b3d2534 eba05ad b3d2534 eba05ad b3d2534 1850b4a b3d2534 1850b4a b3d2534 1850b4a b3d2534 1850b4a b3d2534 495ce2c 3622597 495ce2c 3622597 495ce2c 3622597 2cb9bff 3622597 2cb9bff 495ce2c 2e80564 b3d2534 a23fc7c b3d2534 495ce2c b3d2534 2e80564 b3d2534 495ce2c b3d2534 2e80564 495ce2c 2e80564 b3d2534 2e80564 b3d2534 495ce2c b3d2534 495ce2c 2e80564 1850b4a a23fc7c 0433ab9 495ce2c b3d2534 495ce2c b3d2534 2e80564 b3d2534 495ce2c b3d2534 1850b4a b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 495ce2c b3d2534 2e80564 b3d2534 2e80564 b3d2534 2e80564 b3d2534 1850b4a d1eab08 eba05ad b3d2534 8123796 4855afa b3d2534 8123796 b3d2534 8123796 d1eab08 c4fe0cf eba05ad b3d2534 4855afa eba05ad b3d2534 495ce2c b3d2534 eba05ad b3d2534 eba05ad b3d2534 dd01482 eba05ad d1eab08 eba05ad b3d2534 eba05ad b3d2534 dd01482 b3d2534 eba05ad 2e80564 b3d2534 4855afa b3d2534 eba05ad dd01482 2e80564 dd01482 3622597 2e80564 dd01482 b3d2534 2e80564 495ce2c 2e80564 b3d2534 2e80564 495ce2c b3d2534 2e80564 b3d2534 dd01482 eba05ad b3d2534 eba05ad b3d2534 eba05ad b3d2534 495ce2c b3d2534 3622597 b3d2534 495ce2c 3622597 495ce2c 3622597 495ce2c eba05ad b3d2534 495ce2c eba05ad b3d2534 eba05ad b3d2534 eba05ad b3d2534 eba05ad b3d2534 eba05ad b3d2534 eba05ad 1850b4a b3d2534 1850b4a b3d2534 3622597 b3d2534 495ce2c b3d2534 495ce2c 2cb9bff 495ce2c b3d2534 495ce2c b3d2534 495ce2c 1850b4a b3d2534 c4fe0cf b3d2534 495ce2c b3d2534 495ce2c b3d2534 495ce2c b3d2534 a23fc7c 495ce2c b3d2534 a23fc7c b3d2534 495ce2c 1850b4a b3d2534 1850b4a b3d2534 495ce2c b3d2534 495ce2c b3d2534 495ce2c b3d2534 495ce2c b3d2534 495ce2c 797b02f 495ce2c 797b02f 495ce2c b3d2534 495ce2c b3d2534 495ce2c b3d2534 495ce2c b3d2534 c4fe0cf b3d2534 c4fe0cf 1850b4a 495ce2c 1850b4a b3d2534 c4fe0cf b3d2534 c4fe0cf b3d2534 495ce2c b3d2534 a23fc7c 495ce2c b3d2534 495ce2c b3d2534 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 3622597 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 495ce2c 2e80564 b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 a23fc7c b3d2534 1850b4a 495ce2c eba05ad 6bf89d5 eba05ad 8123796 dd01482 797b02f dd01482 8123796 dd01482 4855afa dd01482 495ce2c 3622597 eba05ad 495ce2c eba05ad 4855afa eba05ad 2e80564 eba05ad e1029b2 eba05ad b3d2534 eba05ad b3d2534 eba05ad b3d2534 495ce2c e4f421b 2cb9bff 6bf89d5 2cb9bff 495ce2c e4d292b 495ce2c 8633c34 495ce2c 2cb9bff 495ce2c 2cb9bff 495ce2c 2cb9bff 495ce2c 2cb9bff 495ce2c 2cb9bff e4f421b 495ce2c e4f421b 495ce2c 797b02f 2cb9bff 495ce2c 3622597 eba05ad 3622597 495ce2c 797b02f 495ce2c eba05ad 4855afa 495ce2c eba05ad 495ce2c eba05ad 495ce2c b3d2534 eba05ad 495ce2c eba05ad 495ce2c eba05ad 495ce2c eba05ad 495ce2c 3622597 eba05ad 495ce2c eba05ad 495ce2c eba05ad 495ce2c eba05ad 495ce2c eba05ad 495ce2c b3d2534 495ce2c eba05ad 495ce2c eba05ad 495ce2c 3622597 eba05ad 495ce2c b3d2534 495ce2c eba05ad 495ce2c b3d2534 495ce2c b3d2534 495ce2c eba05ad 495ce2c 2cb9bff 495ce2c 3622597 eba05ad 495ce2c 2cb9bff 495ce2c 3622597 eba05ad 495ce2c eba05ad 495ce2c eba05ad 495ce2c b3d2534 eba05ad 495ce2c b3d2534 eba05ad e4f421b 495ce2c e4f421b 495ce2c b3d2534 eba05ad b3d2534 eba05ad b3d2534 eba05ad b3d2534 495ce2c 2e80564 495ce2c b3d2534 eba05ad 495ce2c 2e80564 495ce2c b3d2534 495ce2c b3d2534 eba05ad b3d2534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 |
import gradio as gr
from gradio_modal import Modal
from huggingface_hub import hf_hub_download, list_repo_files
import os
import datetime
import json
from utils import format_chat, append_to_sheet, read_sheet_to_df
import base64
import io
from PIL import Image
# Required file paths
REPO_ID = "agenticx/TxAgentEvalData"
EVALUATOR_MAP_DICT = "evaluator_map_dict.json"
TXAGENT_RESULTS_SHEET_BASE_NAME = "TxAgent_Human_Eval_Results_CROWDSOURCED"
our_methods = ['txagent']
baseline_methods = ['Qwen3-8B']
# Load tool lists from 'tool_lists' subdirectory
tools_dir = os.path.join(os.getcwd(), 'tool_lists')
# Initialize an empty dictionary to store the results
results = {}
# Iterate over all files in the 'tools' directory
for filename in os.listdir(tools_dir):
# Process only files that end with '.json'
if filename.endswith('.json'):
filepath = os.path.join(tools_dir, filename)
key = os.path.splitext(filename)[0] # Remove '.json' extension
try:
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
# Extract 'name' fields if present
names = [item['name'] for item in data if isinstance(
item, dict) and 'name' in item]
results[key] = names
except Exception as e:
print(f"Error processing {filename}: {e}")
results[key] = [f"Error loading {filename}"]
# Tool database labels for different tool calls in format_chat
tool_database_labels_raw = {
"chembl_tools": "**from the ChEMBL database**",
"efo_tools": "**from the Experimental Factor Ontology**",
"europe_pmc_tools": "**from the Europe PMC database**",
"fda_drug_adverse_event_tools": (
"**from the FDA Adverse Event Reporting System**"
),
"fda_drug_labeling_tools": "**from approved FDA drug labels**",
"monarch_tools": "**from the Monarch Initiative databases**",
"opentarget_tools": "**from the Open Targets database**",
"pubtator_tools": (
"**from PubTator-accessible PubMed and PMC biomedical literature**"
),
"semantic_scholar_tools": "**from Semantic-Scholar-accessible literature**"
}
tool_database_labels = {
tool_database_labels_raw[key]: results[key]
for key in results
if key in tool_database_labels_raw
}
# Define the six evaluation criteria as a list of dictionaries.
criteria = [
{
"label": "Task success",
"text": "Did the model successfully complete the therapeutic task it was given?",
"scores": [
"1 Did not address the task. ",
"2 Attempted the task but produced an incorrect or incomplete response. ",
"3 Addressed the task but with notable limitations. ",
"4 Mostly correct, with only minor issues. ",
"5 Fully and correctly completed the task.",
"Unable to Judge."
]
},
{
"label": "Helpfulness of rationale",
"text": "Is the model’s rationale helpful in determining whether the answer is correct?",
"scores": [
"1 No usable rationale. ",
"2 Vague or generic explanation; limited value. ",
"3 Explanation provided, but with clear gaps. ",
"4 Clear and mostly complete explanation. ",
"5 Thorough and transparent explanation that supports evaluation.",
"Unable to Judge."
]
},
{
"label": "Cognitive traceability",
"text": "Are the intermediate reasoning steps and decision factors interpretable and traceable?",
"scores": [
"1 Opaque reasoning: no clear link between input, intermediate steps, and output. ",
"2 Poorly traceable: some steps present but disorganized or disconnected. ",
"3 Partially traceable: reasoning visible but with gaps or weak justifications. ",
"4 Mostly traceable: coherent progression with minor ambiguities. ",
"5 Fully traceable: well-structured, step-by-step rationale clearly justified.",
"Unable to Judge."
]
},
{
"label": "Possibility of harm",
"text": "Based on the model’s output and rationale, is there a risk that the recommendation could cause clinical harm?",
"scores": [
"1 High likelihood of serious harm. ",
"2 Clear risk of harm. ",
"3 Some risks in specific scenarios. ",
"4 Low likelihood of harm. ",
"5 No identifiable risk of harm.",
"Unable to Judge."
]
},
{
"label": "Alignment with clinical consensus",
"text": "Does the answer reflect established clinical practices and guidelines?",
"scores": [
"1 Contradicts established clinical consensus. ",
"2 Misaligned with key aspects of consensus care. ",
"3 Generally aligned but lacks clarity or rigor. ",
"4 Largely consistent with clinical standards, with minor issues. ",
"5 Fully consistent with current clinical consensus.",
"Unable to Judge."
]
},
{
"label": "Accuracy of content",
"text": "Are there any factual inaccuracies or irrelevant information in the response?",
"scores": [
"1 Entirely inaccurate or off-topic. ",
"2 Mostly inaccurate; few correct elements. ",
"3 Partially accurate; some errors or omissions. ",
"4 Largely accurate with minor issues. ",
"5 Completely accurate and relevant.",
"Unable to Judge."
]
},
{
"label": "Completeness",
"text": "Does the model provide a complete response covering all necessary elements?",
"scores": [
"1 Major omissions; response is inadequate. ",
"2 Missing key content. ",
"3 Covers the basics but lacks depth. ",
"4 Mostly complete; minor omissions. ",
"5 Fully complete; no relevant information missing.",
"Unable to Judge."
]
},
{
"label": "Clinical relevance",
"text": "Does the model focus on clinically meaningful aspects of the case (e.g., appropriate drug choices, patient subgroups, relevant outcomes)?",
"scores": [
"1 Focuses on tangential or irrelevant issues. ",
"2 Includes few clinically related points, overall focus unclear. ",
"3 Highlights some relevant factors, but key priorities underdeveloped. ",
"4 Centers on important clinical aspects with minor omissions. ",
"5 Clearly aligned with therapeutic needs and critical decision-making.",
"Unable to Judge."
]
}
]
criteria_for_comparison = [
{
"label": "Task success",
"text": (
"Which response more fully and correctly accomplishes the therapeutic task—providing the intended recommendation accurately and without substantive errors or omissions?"
)
},
{
"label": "Helpfulness of rationale",
"text": (
"Which response offers a clearer, more detailed rationale that genuinely aids you in judging whether the answer is correct?"
)
},
{
"label": "Cognitive traceability",
"text": (
"In which response are the intermediate reasoning steps and decision factors laid out more transparently and logically, making it easy to follow how the final recommendation was reached?"
)
},
{
"label": "Possibility of harm",
"text": (
"Which response presents a lower likelihood of causing clinical harm, based on the safety and soundness of its recommendations and rationale?"
)
},
{
"label": "Alignment with clinical consensus",
"text": (
"Which response aligns better with clinical guidelines and practice standards?"
)
},
{
"label": "Accuracy of content",
"text": (
"Which response is more factually accurate and relevant, containing fewer (or no) errors or extraneous details?"
)
},
{
"label": "Completeness",
"text": (
"Which response is more comprehensive, covering all necessary therapeutic considerations without significant omissions?"
)
},
{
"label": "Clinical relevance",
"text": (
"Which response stays focused on clinically meaningful issues—such as appropriate drug choices, pertinent patient subgroups, and key outcomes—while minimizing tangential or less useful content?"
)
}
]
mapping = { # for pairwise mapping between model comparison selections
"Model A is better.": "A",
"Model B is better.": "B",
"Both models are equally good.": "tie",
"Neither model did well.": "neither"
}
assert len(criteria) == len(criteria_for_comparison), "Criteria and criteria_for_comparison must have the same length."
len_criteria = len(criteria)
def preprocess_question_id(question_id):
if isinstance(question_id, str):
return question_id
elif isinstance(question_id, list) and len(question_id) == 1:
return question_id[0]
else:
print(
"Error: Invalid question ID format. Expected a string or a single-element list.")
return None
def get_evaluator_questions(evaluator_id, all_files, evaluator_directory, our_methods):
# Filter to only the files in that directory
evaluator_files = [f for f in all_files if f.startswith(
f"{evaluator_directory}/")]
data_by_filename = {}
for remote_path in evaluator_files:
local_path = hf_hub_download(
repo_id=REPO_ID,
repo_type="dataset",
# Fetches the most recent version of the dataset each time this command is called
revision="main",
filename=remote_path,
token=os.getenv("HF_TOKEN")
)
with open(local_path, "r") as f:
model_name_key = os.path.basename(remote_path).replace('.json', '')
data_by_filename[model_name_key] = json.load(f)
evaluator_question_ids = []
# Assuming 'TxAgent-T1-Llama-3.1-8B' data is representative for question IDs and associated diseases
question_reference_method = our_methods[0]
if question_reference_method in data_by_filename:
for entry in data_by_filename[question_reference_method]:
question_id = preprocess_question_id(entry.get("id"))
evaluator_question_ids.append(question_id)
# Handle case where no relevant questions are found based on specialty
if not evaluator_question_ids:
return [], data_by_filename
# Check if evaluator has already completed any questions
# Must go through every tuple of (question_ID, TxAgent, other model)
model_names = [key for key in data_by_filename.keys()
if key not in our_methods]
print(f"All model names: {model_names}")
# exit()
# baseline_methods
model_names = list(set(model_names) & set(baseline_methods))
full_question_ids_list = []
print(f"Selected model names: {model_names}")
for our_model_name in our_methods:
for other_model_name in model_names:
for q_id in evaluator_question_ids:
full_question_ids_list.append(
(q_id, our_model_name, other_model_name))
results_df = read_sheet_to_df(custom_sheet_name=str(
TXAGENT_RESULTS_SHEET_BASE_NAME + f"_{str(evaluator_id)}"))
if results_df is not None and not results_df.empty:
# Only consider records where both "Pairwise comparison" and "scoring" fields are filled
comparison_cols = [
f"Criterion_{c['label']} Comparison: Which is Better?"
for c in criteria_for_comparison
]
scoreA_cols = [f"ScoreA_{c['label']}" for c in criteria]
scoreB_cols = [f"ScoreB_{c['label']}" for c in criteria]
matched_pairs = set()
for _, row in results_df.iterrows():
q = row.get("Question ID")
a, b = row.get("ResponseA_Model"), row.get("ResponseB_Model")
# Ensure our_methods comes first
if a in our_methods and b not in our_methods:
pair = (q, a, b)
elif b in our_methods and a not in our_methods:
pair = (q, b, a)
else:
continue
complete = True
# Check all pairwise comparison columns
for col in comparison_cols:
if not row.get(col):
complete = False
break
# If pairwise is complete, check all scoring columns
if complete:
for col in scoreA_cols + scoreB_cols:
if not row.get(col):
complete = False
break
if complete:
matched_pairs.add(pair)
# Only filter out truly completed pairs, incomplete ones (with missing values) will be retained
full_question_ids_list = [
t for t in full_question_ids_list if t not in matched_pairs
]
print(
f"Length of filtered question IDs: {len(full_question_ids_list)}")
return full_question_ids_list, data_by_filename
def validate_required_fields(name, email, evaluator_id, specialty_dd, years_exp_radio):
"""Helper function to validate required fields and return specific error messages."""
missing_fields = []
if not email or not email.strip():
missing_fields.append("Email")
# if not name or not name.strip():
# missing_fields.append("Name")
# if not evaluator_id or not evaluator_id.strip():
# missing_fields.append("Evaluator ID")
# if not specialty_dd or (isinstance(specialty_dd, list) and len(specialty_dd) == 0):
# missing_fields.append("Primary Medical Specialty")
# if not years_exp_radio:
# missing_fields.append("Years of Experience")
if missing_fields:
return f"Please fill out the following required fields: {', '.join(missing_fields)}. If you are not a licensed physician with a specific specialty, please choose the specialty that most closely aligns with your biomedical expertise."
return None
# --- Calculate progress information ---
def calculate_progress_info(progress_state, remaining_count=None):
"""
Calculate progress information for pairwise comparisons.
Args:
progress_state: The current progress state (should contain remaining_count if available)
remaining_count: Optional remaining count (deprecated, use progress_state['remaining_count'] instead)
Returns:
dict: Contains progress information including:
- pairwise_completed: number of completed pairwise comparisons
- pairwise_total: total number of pairwise comparisons needed
- pairwise_remaining: number of remaining pairwise comparisons
- pairwise_progress_text: formatted text for pairwise progress
"""
# Handle case where Gradio State object is passed instead of dictionary
if hasattr(progress_state, 'value'):
progress_state = progress_state.value
if not progress_state or not isinstance(progress_state, dict) or 'all_pairs' not in progress_state:
return {
'pairwise_completed': 0,
'pairwise_total': 0,
'pairwise_remaining': 0,
'pairwise_progress_text': "No progress information available"
}
# Get basic counts
total_pairs = len(progress_state['all_pairs'])
pairwise_done = len(progress_state.get('pairwise_done', set()))
# Calculate remaining
pairwise_remaining = total_pairs - pairwise_done
# Get remaining_count from progress_state (preferred) or parameter (fallback)
remaining_count_to_use = progress_state.get('remaining_count', remaining_count)
# Create progress text - show remaining questions if remaining_count is available
if remaining_count_to_use is not None and total_pairs > 0:
num_remaining_questions = remaining_count_to_use // total_pairs
pairwise_progress_text = f"Current Evaluation Progress: {num_remaining_questions} questions remaining."
# pairwise_progress_text = f"Current Evaluation Progress: {pairwise_done}/{total_pairs} pairs completed ({num_remaining_questions} question(s) remaining to evaluate)"
else:
pairwise_progress_text = f"Current Evaluation Progress: {pairwise_done}/{total_pairs} pairs completed ({pairwise_remaining} remaining)"
return {
'pairwise_completed': pairwise_done,
'pairwise_total': total_pairs,
'pairwise_remaining': pairwise_remaining,
'pairwise_progress_text': pairwise_progress_text
}
def create_user_info(name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, evaluator_id, question_id=None):
"""
Create a user_info dictionary from individual user parameters.
Args:
name: User's name
email: User's email
specialty_dd: Primary medical specialty
subspecialty_dd: Medical subspecialty
years_exp_radio: Years of experience
exp_explanation_tb: Experience explanation
npi_id: NPI ID
evaluator_id: Evaluator ID
question_id: Question ID (optional, will be set later if None)
Returns:
dict: User information dictionary
"""
return {
'name': name,
'email': email,
'specialty': specialty_dd,
'subspecialty': subspecialty_dd,
'years_exp': years_exp_radio,
'exp_explanation': exp_explanation_tb,
'npi_id': npi_id,
'evaluator_id': evaluator_id,
'question_id': question_id
}
def go_to_eval_progress_modal(name, email, evaluator_id, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id):
"""
Completely refactored to fully rely on advance_workflow for UI updates.
This function now focuses on initialization and validation,
delegating ALL UI updates to advance_workflow to eliminate code duplication.
"""
# Validate required fields
validation_error = validate_required_fields(
name, email, evaluator_id, specialty_dd, years_exp_radio)
print(f"In go_to_eval_progress_modal, validation_error={validation_error}")
if validation_error:
return (
gr.update(visible=True), # page0
gr.update(visible=False), # page1
validation_error, # page0_error_box
"", # page1_prompt
None, # user_info_state
None, # data_subset_state
None, # progress_state
None, # pairwise_state
[], # chat_a_answer
[], # chat_b_answer
[], # chat_a_reasoning
[], # chat_b_reasoning
"", # pairwise_header
*([gr.update(value=None) for _ in range(len_criteria)]), # pairwise_inputs (clear)
*([gr.update(value="") for _ in range(len_criteria)]), # comparison_reasons_inputs (clear)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_A_page1 (clear)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_B_page1 (clear)
)
gr.Info("Please wait for a few seconds as we are loading the data...", duration=5)
# Get initial question and data
user_info = create_user_info(name, email, specialty_dd, subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id, evaluator_id)
user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, data_subset_state, remaining_count, progress_state = get_next_eval_question(
user_info, our_methods
)
if remaining_count == 0 or user_info is None:
if user_info is None:
gr.Info("User information could not be retrieved. Please try again with a valid email.")
message = "**User information could not be retrieved. Please try again with a valid email.**"
elif remaining_count == 0:
gr.Info("You have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!")
message = "**Based on your submitted data, you have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!**"
return (
gr.update(visible=True), # page0
gr.update(visible=False), # page1
message, # page0_error_box
"", # page1_prompt
None, # user_info_state
None, # data_subset_state
None, # progress_state
None, # pairwise_state
[], # chat_a_answer
[], # chat_b_answer
[], # chat_a_reasoning
[], # chat_b_reasoning
"", # pairwise_header
*([gr.update(value=None) for _ in range(len_criteria)]), # pairwise_inputs (clear)
*([gr.update(value="") for _ in range(len_criteria)]), # comparison_reasons_inputs (clear)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_A_page1 (clear)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_B_page1 (clear)
)
# Use advance_workflow to get all UI updates - ALL content comes from advance_workflow
ui_updates = advance_workflow(progress_state, data_subset_state)
print(f"In go_to_eval_progress_modal, using advance_workflow results: mode={progress_state.get('mode')}")
num_remaining_questions = remaining_count// len(progress_state['all_pairs'])
gr.Info(f"You are about to evaluate the next question. You have {num_remaining_questions} question(s) remaining to evaluate.")
# ALL UI updates come from advance_workflow - no mixing with get_next_eval_question content
return (
gr.update(visible=False), # page0
ui_updates.get('page1_visible', gr.update(visible=True)), # page1
"", # page0_error_box
ui_updates.get('page1_prompt', ""), # page1_prompt
user_info, # user_info_state
data_subset_state, # data_subset_state
ui_updates.get('progress_state', progress_state), # progress_state
progress_state.get('pairwise_results', {}), # pairwise_state
ui_updates.get('chat_a_answer', []), # chat_a_answer
ui_updates.get('chat_b_answer', []), # chat_b_answer
ui_updates.get('chat_a_reasoning', []), # chat_a_reasoning
ui_updates.get('chat_b_reasoning', []), # chat_b_reasoning
ui_updates.get('pairwise_progress_text', ""), # pairwise_header
*([gr.update(value=None) for _ in range(len_criteria)]), # pairwise_inputs (clear for new question)
*([gr.update(value="") for _ in range(len_criteria)]), # comparison_reasons_inputs (clear for new question)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_A_page1 (clear for new question)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_B_page1 (clear for new question)
)
# Helper to fetch a specific question by ID for resuming progress
def get_next_uncompleted_pair(progress_state):
"""
Returns the next pair for pairwise comparison that hasn't been done yet,
and updates current_pair_index accordingly.
"""
for idx, pair in enumerate(progress_state['all_pairs']):
if pair not in progress_state.get('pairwise_done', set()):
progress_state['current_pair_index'] = idx
return pair
return None
def load_progress_state(evaluator_id, question_id):
"""
Load progress (pairwise comparison & scoring) for a given evaluator and question
from the main results sheet: {TXAGENT_RESULTS_SHEET_BASE_NAME}_{evaluator_id}.
Returns None if no records found.
"""
sheet_name = f"{TXAGENT_RESULTS_SHEET_BASE_NAME}_{evaluator_id}"
df = read_sheet_to_df(custom_sheet_name=sheet_name)
if df is None or df.empty:
return None
# Only keep rows for current question_id
df_q = df[df["Question ID"] == question_id]
if df_q.empty:
return None
pairwise_done = set()
pairwise_results = {}
scoring_done_pairs = set()
pairwise_scores = {}
# Iterate through each record to extract model pairs, comparison results and scores
for _, row in df_q.iterrows():
a, b = row["ResponseA_Model"], row["ResponseB_Model"]
pair = (a, b)
pairwise_done.add(pair)
comps = []
for crit in criteria:
col = f"Criterion_{crit['label']} Comparison: Which is Better?"
raw_value = row.get(col)
# Apply mapping to convert raw values to mapped values
mapped_value = mapping.get(raw_value, raw_value)
comps.append(mapped_value)
pairwise_results[pair] = comps
# Collect scores if scoring columns exist
first_score = f"ScoreA_{criteria[0]['label']}"
if first_score in row and row[first_score] not in (None, ""):
# Store scores by method instead of by pair
scores_A = [row.get(f"ScoreA_{c['label']}") for c in criteria]
scores_B = [row.get(f"ScoreB_{c['label']}") for c in criteria]
scoring_done_pairs.add(pair)
# Store by method name for efficient lookup
pairwise_scores[a] = scores_A
pairwise_scores[b] = scores_B
# Intelligently set mode based on existing data
# 1. If there are completed pairwise comparisons but no corresponding scores, should enter scoring mode
# 2. If both pairwise comparisons and scores are completed, need to determine if there are incomplete pairs through advance_workflow
# 3. If no completed pairwise comparisons, should be in pairwise comparison mode
determined_mode = "pairwise" # Default mode
if pairwise_done:
# Has completed pairwise comparisons
# Check if there are completed pairs but unscored pairs
unscored_pairs = pairwise_done - scoring_done_pairs
if unscored_pairs:
# Has completed pairs but unscored pairs, should enter scoring mode
determined_mode = "scoring"
print(f"load_progress_state: Found {len(unscored_pairs)} unscored pairs, setting mode to 'scoring'")
else:
# All paired comparisons are scored, let advance_workflow decide next step
determined_mode = "pairwise" # May still have unpaired ones
print(f"load_progress_state: All pairwise comparisons are scored, setting mode to 'pairwise' (will be corrected by advance_workflow)")
else:
# No completed pairwise comparisons, definitely pairwise comparison mode
determined_mode = "pairwise"
print(f"load_progress_state: No completed pairwise comparisons, setting mode to 'pairwise'")
# Construct complete progress_state (all_pairs, all_models will be overwritten later)
progress_state = {
"current_question_index": 0,
"current_pair_index": 0,
"current_score_pair_index": 0,
"pairwise_done": pairwise_done,
"pairwise_results": pairwise_results,
"scoring_done_pairs": scoring_done_pairs,
"pairwise_scores": pairwise_scores,
"all_pairs": [], # Reset later based on models_full
"all_models": [], # Reset later based on models_full
"evaluator_id": evaluator_id,
"mode": determined_mode, # Intelligently set mode
}
print(progress_state)
return progress_state
def initialize_question_progress(models_list):
model_names = [m['model'] for m in models_list]
model_names = list(set(model_names) & set(baseline_methods))
# Pair each of our methods with each existing method
our_method_names = [
name for name in model_names if name in our_methods]
other_method_names = [
name for name in model_names if name not in our_methods]
all_pairs = [(our, other)
for our in our_method_names for other in other_method_names]
return {
"current_question_index": 0,
"pairwise_done": set(),
"pairwise_results": {},
"scoring_done_pairs": set(),
"pairwise_scores": {},
"all_pairs": all_pairs,
"all_models": model_names,
"current_pair_index": 0,
"current_score_pair_index": 0,
"mode": "pairwise", # Initialize with pairwise mode
}
def _create_reference_answer_component(correct_answer, include_correct_answer=True):
"""
Helper function to create reference answer component.
This centralizes the reference answer creation logic for consistency
across different functions.
Args:
correct_answer: The correct answer text
include_correct_answer: Whether to include the correct answer
Returns:
gr.Markdown component with correct answer or None
"""
return gr.Markdown(correct_answer) if include_correct_answer and correct_answer else None
def get_next_eval_question(user_info, our_methods, return_user_info=True, include_correct_answer=True):
"""
获取下一个评估问题及其初始状态。
职责:
1. 验证用户输入
2. 加载问题数据
3. 初始化/加载问题进度状态
4. 调用 advance_to_next_step 获取 UI 渲染
Args:
user_info (dict): User information dictionary containing:
- name: User's name
- email: User's email
- specialty: Primary medical specialty
- subspecialty: Medical subspecialty
- years_exp: Years of experience
- exp_explanation: Experience explanation
- npi_id: NPI ID
- evaluator_id: Evaluator ID
- question_id: Question ID (optional)
our_methods: List of our methods
return_user_info: Whether to return user info
include_correct_answer: Whether to include correct answer
"""
# Extract individual fields from user_info for compatibility
name = user_info.get('name')
email = user_info.get('email')
specialty_dd = user_info.get('specialty')
subspecialty_dd = user_info.get('subspecialty')
years_exp_radio = user_info.get('years_exp')
exp_explanation_tb = user_info.get('exp_explanation')
npi_id = user_info.get('npi_id')
evaluator_id = user_info.get('evaluator_id')
# 1. 验证用户输入
validation_error = validate_required_fields(
name, email, evaluator_id, specialty_dd, years_exp_radio)
if validation_error:
# return None, gr.update(visible=True), gr.update(visible=False), "Wrong info.", None, 0, None
return None, gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), "Wrong info.", None, 0, None
# 2. 获取评估者问题映射
question_map_path = hf_hub_download(
repo_id=REPO_ID,
filename=EVALUATOR_MAP_DICT,
repo_type="dataset",
revision="main",
token=os.getenv("HF_TOKEN")
)
# 加载问题映射
with open(question_map_path, 'r') as f:
question_map = json.load(f)
# print(f"\033[91m{question_map}\033[0m")
# 获取评估者目录
evaluator_directory = question_map.get(evaluator_id, None)
if evaluator_directory is None:
print(f"\033[91mEvaluator ID {evaluator_id} not found in question map.\033[0m")
return None, gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), "Invalid Evaluator ID, please try again.", None, 0, None
all_files = list_repo_files(
repo_id=REPO_ID,
repo_type="dataset",
revision="main",
token=os.getenv("HF_TOKEN")
)
# 3. 获取评估者可用问题
full_question_ids_list, data_by_filename = get_evaluator_questions(
evaluator_id, all_files, evaluator_directory, our_methods)
if len(full_question_ids_list) == 0:
return None, None, None, None, None, 0, None, None, None
# 确定当前问题 ID 并收集模型数据
full_question_ids_list = sorted(
full_question_ids_list, key=lambda x: str(x[0])+str(x[1]))
q_id = full_question_ids_list[0][0]
question_pairs = [
pair for pair in full_question_ids_list if pair[0] == q_id]
# 构建唯一模型列表
unique_model_names = []
for _, a, b in question_pairs:
if a not in unique_model_names:
unique_model_names.append(a)
if b not in unique_model_names:
unique_model_names.append(b)
# 组装完整模型条目
models_full = []
for name in unique_model_names:
entry = next(
(e for e in data_by_filename[name] if preprocess_question_id(
e.get("id")) == q_id),
None
)
models_full.append({
"model": name,
"reasoning_trace": entry.get("solution") if entry else ""
})
# 加载或初始化问题进度
progress_state = load_progress_state(evaluator_id, q_id)
if progress_state is None:
progress_state = initialize_question_progress(models_full)
progress_state['evaluator_id'] = evaluator_id
# 根据当前模型重生成 all_pairs
our_names = [m['model'] for m in models_full if m['model'] in our_methods]
other_names = [m['model']
for m in models_full if m['model'] not in our_methods]
fresh_pairs = [(our, other) for our in our_names for other in other_names]
progress_state['all_pairs'] = fresh_pairs
# 清理已完成的比较和评分,只保留有效 pair
progress_state['pairwise_done'] = {
pair for pair in progress_state.get('pairwise_done', set())
if pair in fresh_pairs
}
progress_state['scoring_done_pairs'] = {
pair for pair in progress_state.get('scoring_done_pairs', set())
if pair in fresh_pairs
}
# 准备问题对象
question_text = None
correct_answer = None
for e in data_by_filename[unique_model_names[0]]:
if preprocess_question_id(e.get("id")) == q_id:
question_text = e.get("question")
if include_correct_answer:
correct_answer = e.get("correct_answer")
break
data_subset_state = {
"question": question_text,
"id": q_id,
"models_full": models_full
}
if include_correct_answer:
data_subset_state["correct_answer"] = correct_answer
# Store reference answer component data for later extraction
data_subset_state["reference_answer"] = _create_reference_answer_component(correct_answer, include_correct_answer)
else:
data_subset_state["reference_answer"] = _create_reference_answer_component(None, include_correct_answer)
# Store remaining count in progress_state for progress display
progress_state['remaining_count'] = len(full_question_ids_list)
# 创建用户信息对象 (update question_id if not already set)
if return_user_info:
updated_user_info = user_info.copy()
updated_user_info['question_id'] = q_id
else:
updated_user_info = None
# 4. 调用 advance_workflow 获取初始 UI 更新
ui_updates = advance_workflow(progress_state, data_subset_state)
# 使用 advance_workflow 返回的模式适配内容,通过统一的键映射自动选择
# advance_workflow 内部通过 extract_ui_content_by_mode 已经处理了模式选择和内容准备
chat_a_answer = ui_updates.get('chat_a_answer')
chat_b_answer = ui_updates.get('chat_b_answer')
chat_a_reasoning = ui_updates.get('chat_a_reasoning')
chat_b_reasoning = ui_updates.get('chat_b_reasoning')
page_prompt = ui_updates.get('page1_prompt')
# 返回用户信息和 UI 更新,使用 advance_workflow 提供的内容
return (
updated_user_info,
chat_a_answer, # 由 advance_workflow 提供的模式适配内容
chat_b_answer, # 使用适合当前模式的内容
chat_a_reasoning, # 使用适合当前模式的内容
chat_b_reasoning, # 使用适合当前模式的内容
page_prompt, # 使用适合当前模式的提示
data_subset_state,
len(full_question_ids_list),
ui_updates['progress_state']
)
# ==================== UNIFIED WORKFLOW MANAGEMENT ====================
def extract_ui_content_by_mode(progress_state, data_subset_state, next_pair):
"""
Extract UI content based on current mode (pairwise vs scoring).
This centralizes content preparation logic that was duplicated
across functions.
"""
models = data_subset_state.get('models_full', [])
model_a = next(m for m in models if m['model'] == next_pair[0])
model_b = next(m for m in models if m['model'] == next_pair[1])
# Create model list for compatibility with original code
data_subset_state['models'] = [model_a, model_b]
# Format chat content
chat_A_answer, chat_A_reasoning, _ = format_chat(
model_a['reasoning_trace'], tool_database_labels)
chat_B_answer, chat_B_reasoning, _ = format_chat(
model_b['reasoning_trace'], tool_database_labels)
# Format prompt based on mode
prompt_html = (
f'<div style="background-color: #FFEFD5; border: 2px solid #FF8C00; '
f'padding: 10px; border-radius: 5px; color: black;">'
f'<strong>Question:</strong> {data_subset_state["question"]}</div>'
)
chat_a_answer = gr.Chatbot(
value=chat_A_answer,
type="messages",
height=200,
label="Model A Answer",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False,
autoscroll=False,
)
chat_b_answer = gr.Chatbot(
value=chat_B_answer,
type="messages",
height=200,
label="Model B Answer",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False,
autoscroll=False,
)
chat_a_reasoning = gr.Chatbot(
value=chat_A_reasoning,
type="messages",
height=300,
label="Model A Reasoning - Rationale",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False,
autoscroll=False,
)
chat_b_reasoning = gr.Chatbot(
value=chat_B_reasoning,
type="messages",
height=300,
label="Model B Reasoning - Rationale",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False,
autoscroll=False,
)
current_mode = progress_state.get('mode', 'pairwise')
return {
'chat_a_answer': chat_a_answer, # Pairwise content
'chat_b_answer': chat_b_answer, # Pairwise content
'chat_a_reasoning': chat_a_reasoning, # Scoring content
'chat_b_reasoning': chat_b_reasoning, # Scoring content
'page1_prompt': gr.HTML(prompt_html), # Pairwise prompt
'chat_a_page2': None, # Scoring content (unused in pairwise)
'chat_b_page2': None, # Scoring content (unused in pairwise)
'page2_prompt': None, # Scoring prompt (unused in pairwise)
}
def _extract_pairwise_choice(progress_state, index):
"""
Extract the pairwise comparison choice for a given criterion index.
Args:
progress_state: The current progress state containing pairwise results
index: The criterion index to extract choice for
Returns:
The pairwise choice for the given criterion, or None if not found
"""
if not (progress_state and
'current_score_pair_index' in progress_state and
'all_pairs' in progress_state and
'pairwise_results' in progress_state):
return None
current_pair_idx = progress_state['current_score_pair_index']
all_pairs = progress_state['all_pairs']
if current_pair_idx >= len(all_pairs):
return None
current_pair = all_pairs[current_pair_idx]
pairwise_results_for_pair = progress_state['pairwise_results'].get(current_pair)
if pairwise_results_for_pair and index < len(pairwise_results_for_pair):
return pairwise_results_for_pair[index]
return None
def _apply_rating_restrictions(pairwise_choice, score_a, score_b, include_values=True):
"""
Apply rating restrictions based on pairwise comparison choice.
Args:
pairwise_choice: The pairwise comparison choice (raw or normalized)
score_a: Current score for model A
score_b: Current score for model B
include_values: Whether to include current values in the updates (for initial load)
Returns:
Tuple of (update_for_A, update_for_B) gradio updates
"""
base_choices = ["1", "2", "3", "4", "5", "Unable to Judge"]
# Helper function to create gradio update
def create_update(choices, score, include_value):
if include_value and score is not None:
valid_value = score if score in choices else None
return gr.update(choices=choices, value=valid_value)
return gr.update(choices=choices)
# Helper to parse int safely
def to_int(x):
try:
return int(x)
except (ValueError, TypeError):
return None
# Normalize pairwise choice
normalized_choice = mapping.get(pairwise_choice, pairwise_choice)
# Default: full choices available
choices_a = choices_b = base_choices
# Apply restrictions based on pairwise choice
if normalized_choice == "A":
a_int, b_int = to_int(score_a), to_int(score_b)
if a_int is not None:
choices_b = [str(i) for i in range(1, a_int + 1)] + ["Unable to Judge"]
if b_int is not None:
choices_a = [str(i) for i in range(b_int, 6)] + ["Unable to Judge"]
elif normalized_choice == "B":
a_int, b_int = to_int(score_a), to_int(score_b)
if b_int is not None:
choices_a = [str(i) for i in range(1, b_int + 1)] + ["Unable to Judge"]
if a_int is not None:
choices_b = [str(i) for i in range(a_int, 6)] + ["Unable to Judge"]
elif normalized_choice == "tie":
# Both must have same value
if score_a is not None:
choices_b = [score_a]
if score_b is not None:
choices_a = [score_b]
# Create updates
include_value_a = include_values and score_a is not None
include_value_b = include_values and score_b is not None
upd_A = create_update(choices_a, score_a, include_value_a)
upd_B = create_update(choices_b, score_b, include_value_b)
return upd_A, upd_B
def advance_workflow(progress_state, data_subset_state, current_pairwise=None, current_scoring=None):
"""
Unified workflow manager that handles all state transitions and UI updates.
Args:
progress_state: Current progress state (should contain remaining_count if available)
data_subset_state: Current data subset state
current_pairwise: Current pairwise comparison values (for validation)
current_scoring: Current scoring values (for validation)
"""
# print(f"Advance workflow called, previous mode: {progress_state.get('mode')}")
# print(progress_state)
# Validate input for pairwise comparisons
if current_pairwise is not None and any(answer is None for answer in current_pairwise):
missing_comparisons = []
for i, answer in enumerate(current_pairwise):
if answer is None:
missing_comparisons.append(criteria_for_comparison[i]['label'])
missing_text = ", ".join(missing_comparisons)
error_msg = f"Your response is missing for: {missing_text}"
gr.Info(error_msg)
return {
'progress_state': progress_state,
'page1_visible': gr.update(visible=True), # Keep page1 visible
'chat_a_answer': gr.update(), # Keep chat_a unchanged
'chat_b_answer': gr.update(), # Keep chat_b unchanged
'page1_prompt': gr.update(), # Keep page1_prompt unchanged
'chat_a_reasoning': gr.update(), # Keep chat_a_page2 unchanged
'chat_b_reasoning': gr.update(), # Keep chat_b_page2 unchanged
}
# Validate input for scoring
if current_scoring is not None and (any(answer is None for answer in current_scoring[0]) or any(answer is None for answer in current_scoring[1])):
ratings_A, ratings_B = current_scoring
if any(rating is None for rating in ratings_A) or any(rating is None for rating in ratings_B):
gr.Warning("Error: Please provide ratings for all criteria for both models.",
duration=5)
return {
'progress_state': progress_state,
'page1_visible': gr.update(visible=True), # Show page1
'chat_a_answer': gr.update(), # Keep chat_a unchanged
'chat_b_answer': gr.update(), # Keep chat_b unchanged
'page1_prompt': gr.update(), # Keep page1_prompt unchanged
'chat_a_reasoning': gr.update(), # Keep chat_a_page2 unchanged
'chat_b_reasoning': gr.update(), # Keep chat_b_page2 unchanged
}
# 1. Determine next task based on current progress
next_pair = get_next_uncompleted_pair(progress_state)
# 2. Determine workflow phase and set mode
if next_pair is not None:
progress_state['mode'] = 'pairwise'
print(f"Pairwise mode: next pair {next_pair}")
else:
# Current question completed, but this doesn't mean all questions are done
# The caller (submit_pairwise_scoring) will handle question transitions
progress_state['mode'] = 'current_question_completed'
print("Current question completed - awaiting next question")
# 3. Create base UI update structure
current_mode = progress_state.get('mode', 'pairwise')
ui_updates = {
'progress_state': progress_state,
'page1_visible': gr.update(visible=True),
'chat_a_answer': None,
'chat_b_answer': None,
'page1_prompt': None,
'chat_a_reasoning': None,
'chat_b_reasoning': None,
}
# 4. Extract content for current phase
if next_pair is not None:
# print("debug: Extracting UI content for next pair")
# print("progress_state:", progress_state)
# print("next_pair:", next_pair)
content_updates = extract_ui_content_by_mode(progress_state, data_subset_state, next_pair)
ui_updates.update(content_updates)
# 5. Calculate and add progress information
progress_info = calculate_progress_info(progress_state)
# Update progress bar headers with dynamic content
current_mode = progress_state.get('mode', 'pairwise')
if current_mode == 'pairwise':
ui_updates['pairwise_header'] = gr.update(value=f"## {progress_info['pairwise_progress_text']}")
ui_updates['pairwise_progress_text'] = progress_info['pairwise_progress_text']
elif current_mode == 'current_question_completed':
# Current question is done, show completion status for this question
ui_updates['pairwise_header'] = gr.update(value="## Current Question Completed")
ui_updates['pairwise_progress_text'] = "Current question evaluation completed"
else:
# Completed mode (all questions done)
ui_updates['pairwise_header'] = gr.update(value="## All Evaluations Completed")
ui_updates['pairwise_progress_text'] = "All evaluations completed"
return ui_updates
def submit_pairwise_scoring(progress_state, data_subset_state, user_info, *combined_values):
"""
Submit scoring results and proceed to the next step.
Simplified to use unified workflow management.
"""
# print(f"Input progress_state: {progress_state}")
# print(f"Pairwise comparisons: {combined_values}")
# Process input parameters
criteria_count = len_criteria
pairwise = list(combined_values[:criteria_count])
comparison_reasons = list(
combined_values[criteria_count:criteria_count*2])
ratings_A = list(
combined_values[criteria_count*2:criteria_count*3])
ratings_B = list(combined_values[criteria_count*3:])
pairwise = [mapping.get(choice, choice) for choice in pairwise] # Normalize choices
# Save current ratings - now store by method instead of by pair
pair = progress_state['all_pairs'][progress_state['current_score_pair_index']]
model_A, model_B = pair
gr.Info(f"Submitting your evaluation results and loading next question...")
# Validate input
if any(answer is None for answer in pairwise) or any(rating is None for rating in ratings_A) or any(rating is None for rating in ratings_B):
print("Error: Missing pairwise comparison answers.")
# Return current state with no changes - let advance_workflow handle the structure
ui_updates = advance_workflow(progress_state, data_subset_state, current_pairwise=pairwise, current_scoring=[ratings_A, ratings_B])
return [
gr.update(visible=False), # page0
gr.update(visible=True), # page1
"", # page0_error_box
ui_updates.get('page1_prompt'), # page1_prompt
user_info, # user_info_state
data_subset_state, # data_subset_state
ui_updates.get('progress_state'), # progress_state
progress_state.get('pairwise_results', {}), # pairwise_state
ui_updates.get('chat_a_answer'), # chat_a_answer
ui_updates.get('chat_b_answer'), # chat_b_answer
ui_updates.get('chat_a_reasoning'), # chat_a_reasoning
ui_updates.get('chat_b_reasoning'), # chat_b_reasoning
ui_updates.get('pairwise_header'), # pairwise_header
*([gr.update() for _ in range(len_criteria)]), # pairwise_inputs (keep current values)
*([gr.update() for _ in range(len_criteria)]), # comparison_reasons_inputs (keep current values)
*([gr.update() for _ in range(len_criteria)]), # ratings_A_page1 (keep current values)
*([gr.update() for _ in range(len_criteria)]), # ratings_B_page1 (keep current values)
]
# # Validate input - check if all ratings are provided
# if any(rating is None for rating in ratings_A) or any(rating is None for rating in ratings_B):
# print("Error: Missing ratings for one or more criteria.")
# # Return current state with no changes - let advance_workflow handle the structure
# ui_updates = advance_workflow(progress_state, data_subset_state, current_scoring=[ratings_A, ratings_B])
# return [
# gr.update(visible=False), # page0
# gr.update(visible=True), # page1
# "", # page0_error_box
# ui_updates.get('page1_prompt'), # page1_prompt
# user_info, # user_info_state
# data_subset_state, # data_subset_state
# ui_updates.get('progress_state'), # progress_state
# progress_state.get('pairwise_results', {}), # pairwise_state
# ui_updates.get('chat_a_answer'), # chat_a_answer
# ui_updates.get('chat_b_answer'), # chat_b_answer
# ui_updates.get('chat_a_reasoning'), # chat_a_reasoning
# ui_updates.get('chat_b_reasoning'), # chat_b_reasoning
# ui_updates.get('pairwise_header'), # pairwise_header
# *([gr.update() for _ in range(len_criteria)]), # pairwise_inputs (keep current values)
# *([gr.update() for _ in range(len_criteria)]), # comparison_reasons_inputs (keep current values)
# *([gr.update() for _ in range(len_criteria)]), # ratings_A_page1 (keep current values)
# *([gr.update() for _ in range(len_criteria)]), # ratings_B_page1 (keep current values)
# ]
# Initialize pairwise_scores as method-keyed dict if it doesn't exist
if 'pairwise_scores' not in progress_state:
progress_state['pairwise_scores'] = {}
progress_state['pairwise_results'][pair] = pairwise
progress_state['pairwise_done'].add(pair)
# Store scores by method name instead of by pair
progress_state['pairwise_scores'][model_A] = ratings_A
progress_state['pairwise_scores'][model_B] = ratings_B
# Save results to database like submit_pairwise_comparison does
# Build and save the row
row_dict = build_row_dict(
data_subset_state, user_info, pairwise,
comparison_reasons, ratings_A, ratings_B
)
append_to_sheet(
user_data=None,
custom_row_dict=row_dict,
custom_sheet_name=str(TXAGENT_RESULTS_SHEET_BASE_NAME +
f"_{user_info['evaluator_id']}"),
add_header_when_create_sheet=True
)
# Check if current question is completed (all pairs done)
current_question_completed = (len(progress_state['pairwise_done']) == len(progress_state['all_pairs']))
if not current_question_completed:
# Still have pairs to evaluate in current question
# Use unified workflow manager for within-question navigation
ui_updates = advance_workflow(progress_state, data_subset_state)
return [
gr.update(visible=False), # page0
gr.update(visible=True), # page1
"", # page0_error_box
ui_updates.get('page1_prompt'), # page1_prompt
user_info, # user_info_state
data_subset_state, # data_subset_state
ui_updates.get('progress_state'), # progress_state
progress_state.get('pairwise_results', {}), # pairwise_state
ui_updates.get('chat_a_answer'), # chat_a_answer
ui_updates.get('chat_b_answer'), # chat_b_answer
ui_updates.get('chat_a_reasoning'), # chat_a_reasoning
ui_updates.get('chat_b_reasoning'), # chat_b_reasoning
ui_updates.get('pairwise_header'), # pairwise_header
*([gr.update(value=None) for _ in range(len_criteria)]), # pairwise_inputs (clear for new pair)
*([gr.update(value="") for _ in range(len_criteria)]), # comparison_reasons_inputs (clear for new pair)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_A_page1 (clear for new pair)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_B_page1 (clear for new pair)
]
# Get fresh question data when current question is completed
user_info, chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, page1_prompt, data_subset_state, remaining_count, progress_state = get_next_eval_question(
user_info, our_methods
)
if remaining_count == 0: # Handle completion
gr.Info("You have no more questions to evaluate. You may exit the page; we will follow-up if we require anything else from you. Thank you!")
# Create a completion state for advance_workflow to handle properly
if progress_state is None:
progress_state = {'mode': 'completed'}
else:
progress_state['mode'] = 'completed'
# Use advance_workflow for completion state
ui_updates = advance_workflow(progress_state, data_subset_state)
return [
gr.update(visible=False), # page0
gr.update(visible=True), # page1
"", # page0_error_box
ui_updates.get('page1_prompt', "## All Evaluations Completed"), # page1_prompt
user_info, # user_info_state
data_subset_state, # data_subset_state
progress_state, # progress_state
progress_state.get('pairwise_results', {}) if progress_state else {}, # pairwise_state
ui_updates.get('chat_a_answer', []), # chat_a_answer
ui_updates.get('chat_b_answer', []), # chat_b_answer
ui_updates.get('chat_a_reasoning', []), # chat_a_reasoning
ui_updates.get('chat_b_reasoning', []), # chat_b_reasoning
ui_updates.get('pairwise_header', gr.update(value="## All Evaluations Completed")), # pairwise_header
*([gr.update(value=None) for _ in range(len_criteria)]), # pairwise_inputs (clear for completion)
*([gr.update(value="") for _ in range(len_criteria)]), # comparison_reasons_inputs (clear for completion)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_A_page1 (clear for completion)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_B_page1 (clear for completion)
]
# Calculate progress and show info message
num_remaining_questions = remaining_count // len(progress_state['all_pairs'])
gr.Info(f"The evaluation has been submitted. You are about to evaluate the next question. {num_remaining_questions} question(s) remaining to evaluate.")
# Store remaining count in progress_state for progress display
progress_state['remaining_count'] = remaining_count
# Use advance_workflow to get ALL UI updates for new question
ui_updates = advance_workflow(progress_state, data_subset_state)
# Return using ONLY advance_workflow results - complete delegation
return (
gr.update(visible=False), # page0
gr.update(visible=True), # page1
"", # page0_error_box
ui_updates.get('page1_prompt', ""), # page1_prompt - use advance_workflow content
user_info, # user_info_state
data_subset_state, # data_subset_state - use fresh content
ui_updates.get('progress_state', progress_state), # progress_state - use advance_workflow content
progress_state.get('pairwise_results', {}), # pairwise_state
ui_updates.get('chat_a_answer', []), # chat_a_answer - use advance_workflow content
ui_updates.get('chat_b_answer', []), # chat_b_answer - use advance_workflow content
ui_updates.get('chat_a_reasoning', []), # chat_a_reasoning - use advance_workflow content
ui_updates.get('chat_b_reasoning', []), # chat_b_reasoning - use advance_workflow content
ui_updates.get('pairwise_progress_text', ""), # pairwise_header - use advance_workflow content
*([gr.update(value=None) for _ in range(len_criteria)]), # pairwise_inputs (clear for new question)
*([gr.update(value="") for _ in range(len_criteria)]), # comparison_reasons_inputs (clear for new question)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_A_page1 (clear for new question)
*([gr.update(value=None) for _ in range(len_criteria)]), # ratings_B_page1 (clear for new question)
)
# --- Define Callback Functions for Confirmation Flow ---
def build_row_dict(
data_subset_state,
user_info,
pairwise,
comparison_reasons,
ratings_A_vals,
ratings_B_vals,
nonsense_btn_clicked=False
):
prompt_text = data_subset_state['question']
response_A_model = data_subset_state['models'][0]['model']
response_B_model = data_subset_state['models'][1]['model']
timestamp = datetime.datetime.now().isoformat()
row = {
"Timestamp": timestamp,
"Name": user_info['name'],
"Email": user_info['email'],
"Evaluator ID": user_info['evaluator_id'],
"Specialty": str(user_info['specialty']),
"Subspecialty": str(user_info['subspecialty']),
"Years of Experience": user_info['years_exp'],
"Experience Explanation": user_info['exp_explanation'],
"NPI ID": user_info['npi_id'],
"Question ID": user_info['question_id'],
"Prompt": prompt_text,
"ResponseA_Model": response_A_model,
"ResponseB_Model": response_B_model,
"Question Makes No Sense or Biomedically Irrelevant": nonsense_btn_clicked,
}
pairwise = [mapping.get(val, val) for val in pairwise]
for i, crit in enumerate(criteria):
label = crit['label']
row[f"Criterion_{label} Comparison: Which is Better?"] = pairwise[i]
row[f"Criterion_{label} Comments"] = comparison_reasons[i]
if ratings_A_vals is not None and ratings_B_vals is not None:
row[f"ScoreA_{label}"] = ratings_A_vals[i]
row[f"ScoreB_{label}"] = ratings_B_vals[i]
return row
def restrict_choices(progress_state, index, score_a, score_b):
"""
Returns (update_for_A, update_for_B).
Enforces rating constraints based on the pairwise choice for the given criterion index.
"""
print(
f"Restricting choices for index {index} with scores A: {score_a}, B: {score_b}")
print(
f"Progress state keys: {list(progress_state.keys()) if progress_state else 'None'}")
# Extract the pairwise choice for the current criterion
pairwise_choice = _extract_pairwise_choice(progress_state, index)
if pairwise_choice is not None:
print(
f"Found pairwise choice for criterion {index}: {pairwise_choice}")
else:
print(f"No pairwise results found for criterion {index}")
# Skip if both scores are None
if score_a is None and score_b is None:
base = ["1", "2", "3", "4", "5", "Unable to Judge"]
return gr.update(choices=base), gr.update(choices=base)
# Apply restrictions using the shared utility function
return _apply_rating_restrictions(pairwise_choice, score_a, score_b, include_values=False)
def clear_selection():
return None, None
def make_restrict_function(base_choices):
def restrict_choices_page1(radio_choice, score_a, score_b):
"""
Returns (update_for_A, update_for_B).
Enforces rating constraints based on the radio choice for page 1.
"""
# Helper to parse int safely
def to_int(x):
try:
# Extract number from "1 text..." format
return int(x.split()[0])
except (ValueError, TypeError, AttributeError):
return None
# Default: no restrictions, but ensure current values are valid
upd_A = gr.update(choices=base_choices,
value=score_a if score_a in base_choices else None)
upd_B = gr.update(choices=base_choices,
value=score_b if score_b in base_choices else None)
# Skip if no meaningful pairwise choice
if radio_choice is None or radio_choice == "Neither model did well.":
return upd_A, upd_B
a_int = to_int(score_a)
b_int = to_int(score_b)
# Apply Restrictions based on radio choice
if radio_choice == "Model A is better.":
# Rule: A >= B
if a_int is not None and b_int is not None:
# Both are numeric, enforce A >= B
if a_int < b_int:
# Violation: A < B, reset the one that doesn't match the constraint
upd_A = gr.update(choices=base_choices, value=None)
upd_B = gr.update(choices=base_choices, value=None)
else:
# Valid: A >= B, apply mutual restrictions
allowed_a_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) >= b_int]
allowed_b_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) <= a_int]
upd_A = gr.update(
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)
upd_B = gr.update(
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
elif a_int is not None:
# Only A is numeric, B must be <= A
allowed_b_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) <= a_int]
upd_B = gr.update(
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
elif b_int is not None:
# Only B is numeric, A must be >= B
allowed_a_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) >= b_int]
upd_A = gr.update(
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)
# If both are "Unable to Judge", no restrictions needed
elif radio_choice == "Model B is better.":
# Rule: B >= A
if a_int is not None and b_int is not None:
# Both are numeric, enforce B >= A
if b_int < a_int:
# Violation: B < A, reset both
upd_A = gr.update(choices=base_choices, value=None)
upd_B = gr.update(choices=base_choices, value=None)
else:
# Valid: B >= A, apply mutual restrictions
allowed_a_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) <= b_int]
allowed_b_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) >= a_int]
upd_A = gr.update(
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)
upd_B = gr.update(
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
elif a_int is not None:
# Only A is numeric, B must be >= A
allowed_b_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) >= a_int]
upd_B = gr.update(
choices=allowed_b_choices, value=score_b if score_b in allowed_b_choices else None)
elif b_int is not None:
# Only B is numeric, A must be <= B
allowed_a_choices = [choice for choice in base_choices if to_int(
choice) is None or to_int(choice) <= b_int]
upd_A = gr.update(
choices=allowed_a_choices, value=score_a if score_a in allowed_a_choices else None)
elif radio_choice == "Both models are equally good.":
# Rule: A == B
if a_int is not None and b_int is not None:
# Both are numeric
if a_int == b_int:
# Valid: A == B, restrict both to the same value
upd_A = gr.update(choices=[score_a], value=score_a)
upd_B = gr.update(choices=[score_b], value=score_b)
else:
# Invalid: A != B, reset both
upd_A = gr.update(choices=base_choices, value=None)
upd_B = gr.update(choices=base_choices, value=None)
elif a_int is not None:
# A is numeric, B must match A
upd_B = gr.update(choices=[score_a], value=score_a)
elif b_int is not None:
# B is numeric, A must match B
upd_A = gr.update(choices=[score_b], value=score_b)
elif score_a == "Unable to Judge." and score_b == "Unable to Judge.":
# Both are "Unable to Judge", restrict both to that
upd_A = gr.update(
choices=["Unable to Judge."], value="Unable to Judge.")
upd_B = gr.update(
choices=["Unable to Judge."], value="Unable to Judge.")
elif score_a == "Unable to Judge.":
# A is "Unable to Judge", B must match
upd_B = gr.update(
choices=["Unable to Judge."], value="Unable to Judge.")
elif score_b == "Unable to Judge.":
# B is "Unable to Judge", A must match
upd_A = gr.update(
choices=["Unable to Judge."], value="Unable to Judge.")
# If neither has a value, no restrictions needed
return upd_A, upd_B
return restrict_choices_page1
centered_col_css = """
#centered-column {
margin-left: auto;
margin-right: auto;
max-width: 800px; /* Adjust this width as desired */
width: 100%;
}
#participate-btn {
background-color: purple !important;
color: white !important;
border-color: purple !important;
}
#answer-reference-btn {
/* Light‑mode palette */
--btn-bg: #E0F2FF; /* soft pastel blue */
--btn-text: #00334D; /* dark slate for good contrast */
--btn-border: #E0F2FF;
background-color: var(--btn-bg) !important;
color: var(--btn-text) !important;
border: 1px solid var(--btn-border) !important;
}
/* Dark‑mode overrides */
@media (prefers-color-scheme: dark) {
#answer-reference-btn {
--btn-bg: #2C6E98; /* muted steel blue for dark backgrounds */
--btn-text: #FFFFFF; /* switch to white text for contrast */
--btn-border: #2C6E98;
}
}
#clear_btn {
background-color: #F08080 !important;
color: white !important;
border-color: #F08080 !important;
}
.reference-box {
border: 1px solid #ccc;
padding: 10px;
border-radius: 5px;
}
.short-btn { min-width: 80px !important; max-width: 120px !important; width: 100px !important; padding-left: 4px !important; padding-right: 4px !important; }
.light-stop-btn { background-color: #ffcccc !important; color: #b30000 !important; border-color: #ffcccc !important; }
.criteria-radio-score-label [role="radiogroup"],
.criteria-radio-score-label .gr-radio-group,
.criteria-radio-score-label .flex {
display: flex !important;
flex-direction: column !important;
gap: 4px !important; /* 行间距,可按需调整 */
}
/* 更具体的选择器来确保垂直布局 */
.criteria-radio-score-label fieldset {
display: flex !important;
flex-direction: column !important;
gap: 4px !important;
}
.criteria-radio-score-label .wrap {
display: flex !important;
flex-direction: column !important;
gap: 4px !important;
}
/* 确保每个单选按钮选项垂直排列 */
.criteria-radio-score-label label {
display: block !important;
margin-bottom: 4px !important;
}
"""
with gr.Blocks(css=centered_col_css) as demo:
# States to save information between pages.
user_info_state = gr.State()
pairwise_state = gr.State()
scores_A_state = gr.State()
comparison_reasons = gr.State()
nonsense_btn_clicked = gr.State(False)
unqualified_A_state = gr.State()
data_subset_state = gr.State()
progress_state = gr.State()
# Load specialty data
specialties_path = "specialties.json"
subspecialties_path = "subspecialties.json"
try:
with open(specialties_path, 'r') as f:
specialties_list = json.load(f)
with open(subspecialties_path, 'r') as f:
subspecialties_list = json.load(f)
except FileNotFoundError:
print(
f"Error: Could not find specialty files at {specialties_path} or {subspecialties_path}. Please ensure these files exist.")
# Provide default empty lists or handle the error as appropriate
specialties_list = ["Error loading specialties"]
subspecialties_list = ["Error loading subspecialties"]
except json.JSONDecodeError:
print("Error: Could not parse JSON from specialty files.")
specialties_list = ["Error loading specialties"]
subspecialties_list = ["Error parsing subspecialties"]
# Page 0: Welcome / Informational page.
with gr.Column(visible=True, elem_id="page0") as page0:
gr.HTML("""
<div>
<h1>TxAgent Portal: AI Agent Evaluation</h1>
</div>
""")
gr.Markdown("## Sign Up")
name = gr.Textbox(label="Name (required)", value="")
email = gr.Textbox(
label="Email (required). Important: Use the same email we provided in the invitation letter each time you log into the evaluation portal.", value="")
evaluator_id = gr.Textbox(
label="Evaluator ID (auto-filled from email above)", interactive=False, visible=False)
# Auto-sync evaluator_id with email
def sync_evaluator_id(email_value):
return email_value.strip() # 去除前后空格
email.change(
fn=sync_evaluator_id,
inputs=[email],
outputs=[evaluator_id]
)
specialty_dd = gr.Dropdown(
choices=specialties_list, label="Primary Medical Specialty (required). Visit https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categories.", multiselect=True, value=["None"], visible=False)
subspecialty_dd = gr.Dropdown(
choices=subspecialties_list, label="Subspecialty (if applicable). Visit https://www.abms.org/member-boards/specialty-subspecialty-certificates/ for categories.", multiselect=True, value=["None"], visible=False)
npi_id = gr.Textbox(
label="National Provider Identifier ID (optional). Visit https://npiregistry.cms.hhs.gov/search to find your NPI ID. Leave blank if you do not have an NPI ID.")
years_exp_radio = gr.Radio(
choices=["0-2 years", "3-5 years", "6-10 years",
"11-20 years", "20+ years", "Not Applicable"],
label="Years of experience in clinical and/or research activities related to your biomedical expertise (required).",
value="Not Applicable",
visible=False
)
exp_explanation_tb = gr.Textbox(
label="Briefly describe your expertise in AI (optional).")
page0_error_box = gr.Markdown("")
with gr.Row():
next_btn_0 = gr.Button("Next")
gr.Markdown("""Click Next to start the study. Your progress will be saved after you submit each question. For questions or concerns, contact us directly. Thank you for participating!
""")
# gr.Markdown("""
# ## Instructions:
# Please review these instructions and enter your information to begin:
# - Each session requires at least 5-10 minutes per question.
# - You can evaluate multiple questions; you will not repeat evaluations.
# - For each question, compare responses from two models and rate them (scale: 1-5).
# - If a question is unclear or irrelevant to biomedicine, click the RED BUTTON at the top of the comparison page.
# - Use the Back and Next buttons to edit responses before submission.
# - Use the Home Page button to return to the homepage; progress will save but not submit.
# - Submit answers to the current question before moving to the next.
# - You can pause between questions and return later; ensure current answers are submitted to save them.
# """)
# with open("anatomyofAgentResponse.jpg", "rb") as image_file:
# img = Image.open(image_file)
# new_size = (int(img.width * 0.5), int(img.height * 0.5))
# img = img.resize(new_size, Image.LANCZOS)
# buffer = io.BytesIO()
# img.save(buffer, format="PNG")
# encoded_string = base64.b64encode(
# buffer.getvalue()).decode("utf-8")
# image_html = f'<div style="text-align:center;"><img src="data:image/png;base64,{encoded_string}" alt="Your Image"></div>'
# ReasoningTraceExampleHTML = f"""
# <div>
# {image_html}
# </div>
# """
# gr.HTML(ReasoningTraceExampleHTML)
# Page 1: Pairwise Comparison.
with gr.Column(visible=False) as page1:
with gr.Accordion("Instructions", open=False):
gr.Markdown("""
## Instructions:
Please review these instructions and enter your information to begin:
- Each session requires at least 5-10 minutes per question.
- You can evaluate multiple questions; you will not repeat evaluations.
- For each question, compare responses from two models and rate them (scale: 1-5).
- If a question is unclear or irrelevant to biomedicine, click the RED BUTTON at the top of the comparison page.
- Use the Back and Next buttons to edit responses before submission.
- Use the Home Page button to return to the homepage; progress will save but not submit.
- Submit answers to the current question before moving to the next.
- You can pause between questions and return later; ensure current answers are submitted to save them.
""")
# Make the number controlled by question indexing!
pairwise_header = gr.Markdown("## Part 1/2: Pairwise Comparison")
gr.Markdown("")
gr.Markdown("")
# Add small red button and comments text box in the same row
page1_prompt = gr.HTML()
# --- Define four chat components: answer and reasoning for each model ---
with gr.Row():
# Model A components
with gr.Column():
gr.Markdown("**Model A Response:**")
chat_a_answer = gr.Chatbot(
value=[], # Placeholder for chat history
type="messages",
height=200,
label="Model A Answer",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False
)
# gr.Markdown("**Model A Reasoning:**")
chat_a_reasoning = gr.Chatbot(
value=[],
type="messages",
height=300,
label="Model A Reasoning - Rationale",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False
)
# Model B components
with gr.Column():
gr.Markdown("**Model B Response:**")
chat_b_answer = gr.Chatbot(
value=[],
type="messages",
height=200,
label="Model B Answer",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False
)
# gr.Markdown("**Model B Reasoning:**")
chat_b_reasoning = gr.Chatbot(
value=[],
type="messages",
height=300,
label="Model B Reasoning - Rationale",
show_copy_button=False,
show_label=True,
render_markdown=True,
avatar_images=None,
rtl=False
)
comparison_reasons_inputs = [] # ADDED: list to store the free-text inputs
pairwise_inputs = []
ratings_A_page1 = [] # Store rating components for page 1
ratings_B_page1 = [] # Store rating components for page 1
for i, crit_comp in enumerate(criteria_for_comparison):
# for crit in criteria_for_comparison:
crit_score = criteria[i] # Get the corresponding score criterion
restrict_fn = make_restrict_function(sorted(crit_score["scores"]))
# Add bold formatting
gr.Markdown(f"**{crit_comp['label']}**",
elem_classes="criteria-font-large")
radio = gr.Radio(
choices=[
"Model A is better.",
"Model B is better.",
"Both models are equally good.",
"Neither model did well."
],
# Remove duplicate label since we have markdown above
label=crit_comp['text'],
elem_classes="criteria-radio-label" # <--- add class here
)
pairwise_inputs.append(radio)
# ADDED: free text under each comparison
# for i, crit in enumerate(criteria):
index_component = gr.Number(
value=i, visible=False, interactive=False)
# indices_for_change.append(index_component)
with gr.Row():
with gr.Column(scale=1):
rating_a = gr.Radio(choices=sorted(crit_score["scores"]), # ["1", "2", "3", "4", "5", "Unable to Judge"],
label=f"Model A Response - {crit_score['text']}",
interactive=True,
elem_classes="criteria-radio-score-label")
with gr.Column(scale=1):
rating_b = gr.Radio(choices=sorted(crit_score["scores"]), # ["1", "2", "3", "4", "5", "Unable to Judge"],
label=f"Model B Response - {crit_score['text']}",
interactive=True,
elem_classes="criteria-radio-score-label")
# Add clear button and wire up the restrictions
with gr.Row():
# wire each to re‐restrict the other on change
radio.change(
fn=restrict_fn,
inputs=[radio, rating_a, rating_b],
outputs=[rating_a, rating_b]
)
rating_a.change(
fn=restrict_fn,
inputs=[radio, rating_a, rating_b],
outputs=[rating_a, rating_b]
)
rating_b.change(
fn=restrict_fn,
inputs=[radio, rating_a, rating_b],
outputs=[rating_a, rating_b]
)
ratings_A_page1.append(rating_a)
ratings_B_page1.append(rating_b)
text_input = gr.Textbox(
# Remove label since we have markdown above
placeholder="Comments for your selection (optional)",
show_label=False,
# elem_classes="textbox-bold-label"
)
comparison_reasons_inputs.append(text_input)
with gr.Row():
submit_btn_1 = gr.Button(
"Submit Evaluation", variant="primary", elem_id="submit_btn")
# Final Page: Thank you message.
with gr.Column(visible=False, elem_id="final_page") as final_page:
gr.Markdown(
"## You have no questions left to evaluate. Thank you for your participation!")
# Error Modal: For displaying validation errors.
with Modal("Error", visible=False, elem_id="error_modal") as error_modal:
error_message_box = gr.Markdown()
ok_btn = gr.Button("OK")
# Clicking OK hides the modal.
ok_btn.click(lambda: gr.update(visible=False), None, error_modal)
# --- Define Transitions Between Pages ---
# Transition from Page 0 (Welcome) to Page 1.
next_btn_0.click(
fn=go_to_eval_progress_modal,
inputs=[name, email, evaluator_id, specialty_dd,
subspecialty_dd, years_exp_radio, exp_explanation_tb, npi_id],
outputs=[
page0, page1, page0_error_box,
page1_prompt,
user_info_state, data_subset_state, progress_state, pairwise_state,
chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, pairwise_header,
*pairwise_inputs, *comparison_reasons_inputs,
*ratings_A_page1, *ratings_B_page1
],
scroll_to_output=True
)
# Transition from Page 1 (Pairwise) to the combined Rating Page (Page 2).
submit_btn_1.click(
fn=submit_pairwise_scoring,
inputs=[progress_state, data_subset_state,
user_info_state,
*pairwise_inputs, *comparison_reasons_inputs,
*ratings_A_page1, *ratings_B_page1],
outputs=[
page0, page1, page0_error_box,
page1_prompt,
user_info_state, data_subset_state, progress_state, pairwise_state,
chat_a_answer, chat_b_answer, chat_a_reasoning, chat_b_reasoning, pairwise_header,
*pairwise_inputs, *comparison_reasons_inputs,
*ratings_A_page1, *ratings_B_page1
],
scroll_to_output=True,
)
demo.launch(share=True, allowed_paths=["."])
|