Spaces:
Runtime error
Runtime error
| #include "alibi.cuh" | |
| static __global__ void alibi_f32(const float * x, float * dst, const int ncols, const int k_rows, | |
| const int n_heads_log2_floor, const float m0, const float m1) { | |
| const int col = blockDim.x*blockIdx.x + threadIdx.x; | |
| if (col >= ncols) { | |
| return; | |
| } | |
| const int row = blockDim.y*blockIdx.y + threadIdx.y; | |
| const int i = row*ncols + col; | |
| const int k = row/k_rows; | |
| float m_k; | |
| if (k < n_heads_log2_floor) { | |
| m_k = powf(m0, k + 1); | |
| } else { | |
| m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); | |
| } | |
| dst[i] = col * m_k + x[i]; | |
| } | |
| static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, | |
| const int k_rows, const int n_heads_log2_floor, const float m0, | |
| const float m1, cudaStream_t stream) { | |
| const dim3 block_dims(CUDA_ALIBI_BLOCK_SIZE, 1, 1); | |
| const int num_blocks_x = (ncols + CUDA_ALIBI_BLOCK_SIZE - 1) / (CUDA_ALIBI_BLOCK_SIZE); | |
| const dim3 block_nums(num_blocks_x, nrows, 1); | |
| alibi_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, k_rows, n_heads_log2_floor, m0, m1); | |
| } | |
| void ggml_cuda_op_alibi(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| const float * src0_d = (const float *)src0->data; | |
| float * dst_d = (float *)dst->data; | |
| cudaStream_t stream = ctx.stream(); | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| const int64_t ne00 = src0->ne[0]; | |
| const int64_t ne01 = src0->ne[1]; | |
| const int64_t ne02 = src0->ne[2]; | |
| const int64_t nrows = ggml_nrows(src0); | |
| //const int n_past = ((int32_t *) dst->op_params)[0]; | |
| const int n_head = ((int32_t *) dst->op_params)[1]; | |
| float max_bias; | |
| memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); | |
| //GGML_ASSERT(ne01 + n_past == ne00); | |
| GGML_ASSERT(n_head == ne02); | |
| const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); | |
| const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); | |
| const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); | |
| alibi_f32_cuda(src0_d, dst_d, ne00, nrows, ne01, n_heads_log2_floor, m0, m1, stream); | |
| } | |