Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| from __future__ import annotations | |
| import argparse | |
| import concurrent.futures | |
| import enum | |
| import faulthandler | |
| import functools | |
| import itertools | |
| import json | |
| import math | |
| import mmap | |
| import os | |
| import pickle | |
| import re | |
| import signal | |
| import struct | |
| import sys | |
| import textwrap | |
| import time | |
| import zipfile | |
| from abc import ABC, abstractmethod | |
| from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor | |
| from dataclasses import dataclass | |
| from pathlib import Path | |
| from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable | |
| import numpy as np | |
| from sentencepiece import SentencePieceProcessor | |
| if 'NO_LOCAL_GGUF' not in os.environ: | |
| sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) | |
| import gguf | |
| if TYPE_CHECKING: | |
| from typing_extensions import Self, TypeAlias | |
| if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): | |
| faulthandler.register(signal.SIGUSR1) | |
| NDArray: TypeAlias = 'np.ndarray[Any, Any]' | |
| ARCH = gguf.MODEL_ARCH.LLAMA | |
| DEFAULT_CONCURRENCY = 8 | |
| ADDED_TOKENS_FILE = 'added_tokens.json' | |
| FAST_TOKENIZER_FILE = 'tokenizer.json' | |
| # | |
| # data types | |
| # | |
| class DataType: | |
| name: str | |
| dtype: np.dtype[Any] | |
| valid_conversions: list[str] | |
| def elements_to_bytes(self, n_elements: int) -> int: | |
| return n_elements * self.dtype.itemsize | |
| class UnquantizedDataType(DataType): | |
| pass | |
| DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0']) | |
| DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0']) | |
| DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = []) | |
| DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0']) | |
| class QuantizedDataType(DataType): | |
| block_size: int | |
| quantized_dtype: np.dtype[Any] | |
| ggml_type: gguf.GGMLQuantizationType | |
| def quantize(self, arr: NDArray) -> NDArray: | |
| raise NotImplementedError(f'Quantization for {self.name} not implemented') | |
| def elements_to_bytes(self, n_elements: int) -> int: | |
| assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}' | |
| return self.quantized_dtype.itemsize * (n_elements // self.block_size) | |
| class Q8_0QuantizedDataType(QuantizedDataType): | |
| # Mini Q8_0 quantization in Python! | |
| def quantize(self, arr: NDArray) -> NDArray: | |
| assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}' | |
| assert arr.dtype == np.float32, f'Bad array type {arr.dtype}' | |
| n_blocks = arr.size // self.block_size | |
| blocks = arr.reshape((n_blocks, self.block_size)) | |
| # Much faster implementation of block quantization contributed by @Cebtenzzre | |
| def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[tuple[Any, Any]]: | |
| d = abs(blocks).max(axis = 1) / np.float32(127) | |
| with np.errstate(divide = 'ignore'): | |
| qs = (blocks / d[:, None]).round() | |
| qs[d == 0] = 0 | |
| yield from zip(d, qs) | |
| return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype) | |
| DT_Q8_0 = Q8_0QuantizedDataType('Q8_0', | |
| dtype = np.dtype(np.float32), valid_conversions = [], | |
| ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32, | |
| quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))])) | |
| # Quantized types skipped here because they may also map to np.float32 | |
| NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {} | |
| for dt in (DT_BF16, DT_F16, DT_F32, DT_I32): | |
| if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE: | |
| raise ValueError(f'Invalid duplicate data type {dt}') | |
| NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt | |
| SAFETENSORS_DATA_TYPES: dict[str, DataType] = { | |
| 'BF16': DT_BF16, | |
| 'F16': DT_F16, | |
| 'F32': DT_F32, | |
| 'I32': DT_I32, | |
| } | |
| # TODO: match this with `llama_ftype` | |
| # TODO: rename to LLAMAFileType | |
| # TODO: move to `gguf.py` | |
| class GGMLFileType(enum.IntEnum): | |
| AllF32 = 0 | |
| MostlyF16 = 1 # except 1d tensors | |
| MostlyQ8_0 = 7 # except 1d tensors | |
| def type_for_tensor(self, name: str, tensor: LazyTensor) -> DataType: | |
| dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self) | |
| if dt is None: | |
| raise ValueError(self) | |
| # Convert all 1D tensors to F32. Most of the codebase that takes in 1D tensors only handles F32 tensors, and most of the outputs tensors are F32. | |
| # Also The 1d tensors aren't much of a performance/size issue. So instead of having to have separate F32 and F16 implementations of both, just convert everything to F32 for now. | |
| return dt if len(tensor.shape) > 1 else DT_F32 | |
| GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { | |
| GGMLFileType.AllF32 : DT_F32, | |
| GGMLFileType.MostlyF16 : DT_F16, | |
| GGMLFileType.MostlyQ8_0: DT_Q8_0, | |
| } | |
| # | |
| # hparams loading | |
| # | |
| class Params: | |
| n_vocab: int | |
| n_embd: int | |
| n_layer: int | |
| n_ctx: int | |
| n_ff: int | |
| n_head: int | |
| n_head_kv: int | |
| n_experts: int | None = None | |
| n_experts_used: int | None = None | |
| f_norm_eps: float | None = None | |
| rope_scaling_type: gguf.RopeScalingType | None = None | |
| f_rope_freq_base: float | None = None | |
| f_rope_scale: float | None = None | |
| n_orig_ctx: int | None = None | |
| rope_finetuned: bool | None = None | |
| ftype: GGMLFileType | None = None | |
| # path to the directory containing the model files | |
| path_model: Path | None = None | |
| def guessed(model: LazyModel) -> Params: | |
| # try transformer naming first | |
| n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape | |
| # try transformer naming first | |
| if "model.layers.0.self_attn.q_proj.weight" in model: | |
| n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) | |
| elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming | |
| n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) | |
| else: | |
| n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) | |
| if n_layer < 1: | |
| msg = """\ | |
| failed to guess 'n_layer'. This model is unknown or unsupported. | |
| Suggestion: provide 'config.json' of the model in the same directory containing model files.""" | |
| raise KeyError(textwrap.dedent(msg)) | |
| n_head = n_embd // 128 # guessed | |
| n_mult = 256 # guessed | |
| # TODO: verify this | |
| n_ff = int(2 * (4 * n_embd) / 3) | |
| n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult) | |
| return Params( | |
| n_vocab = n_vocab, | |
| n_embd = n_embd, | |
| n_layer = n_layer, | |
| n_ctx = -1, | |
| n_ff = n_ff, | |
| n_head = n_head, | |
| n_head_kv = n_head, | |
| f_norm_eps = 1e-5, | |
| ) | |
| def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: | |
| with open(config_path) as f: | |
| config = json.load(f) | |
| rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None | |
| rope_scaling = config.get("rope_scaling") | |
| if rope_scaling is not None and (typ := rope_scaling.get("type")): | |
| rope_factor = rope_scaling.get("factor") | |
| f_rope_scale = rope_factor | |
| if typ == "linear": | |
| rope_scaling_type = gguf.RopeScalingType.LINEAR | |
| elif typ == "yarn": | |
| rope_scaling_type = gguf.RopeScalingType.YARN | |
| n_orig_ctx = rope_scaling['original_max_position_embeddings'] | |
| rope_finetuned = rope_scaling['finetuned'] | |
| else: | |
| raise NotImplementedError(f'Unknown rope scaling type: {typ}') | |
| if "max_sequence_length" in config: | |
| n_ctx = config["max_sequence_length"] | |
| elif "max_position_embeddings" in config: | |
| n_ctx = config["max_position_embeddings"] | |
| else: | |
| msg = """\ | |
| failed to guess 'n_ctx'. This model is unknown or unsupported. | |
| Suggestion: provide 'config.json' of the model in the same directory containing model files.""" | |
| raise KeyError(textwrap.dedent(msg)) | |
| n_experts = None | |
| n_experts_used = None | |
| if "num_local_experts" in config: | |
| n_experts = config["num_local_experts"] | |
| n_experts_used = config["num_experts_per_tok"] | |
| return Params( | |
| n_vocab = config["vocab_size"], | |
| n_embd = config["hidden_size"], | |
| n_layer = config["num_hidden_layers"], | |
| n_ctx = n_ctx, | |
| n_ff = config["intermediate_size"], | |
| n_head = (n_head := config["num_attention_heads"]), | |
| n_head_kv = config.get("num_key_value_heads", n_head), | |
| n_experts = n_experts, | |
| n_experts_used = n_experts_used, | |
| f_norm_eps = config["rms_norm_eps"], | |
| f_rope_freq_base = config.get("rope_theta"), | |
| rope_scaling_type = rope_scaling_type, | |
| f_rope_scale = f_rope_scale, | |
| n_orig_ctx = n_orig_ctx, | |
| rope_finetuned = rope_finetuned, | |
| ) | |
| # LLaMA v2 70B params.json | |
| # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} | |
| def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: | |
| with open(config_path) as f: | |
| config = json.load(f) | |
| n_experts = None | |
| n_experts_used = None | |
| f_rope_freq_base = None | |
| # hack to determine LLaMA v1 vs v2 vs CodeLlama | |
| if config.get("moe"): | |
| # Mixtral | |
| n_ctx = 32768 | |
| elif config.get("rope_theta") == 1000000: | |
| # CodeLlama | |
| n_ctx = 16384 | |
| elif config["norm_eps"] == 1e-05: | |
| # LLaMA v2 | |
| n_ctx = 4096 | |
| else: | |
| # LLaMA v1 | |
| n_ctx = 2048 | |
| if "layers.0.feed_forward.w1.weight" in model: | |
| n_ff = model["layers.0.feed_forward.w1.weight"].shape[0] | |
| if config.get("moe"): | |
| n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0] | |
| n_experts = config["moe"]["num_experts"] | |
| n_experts_used = config["moe"]["num_experts_per_tok"] | |
| f_rope_freq_base = 1e6 | |
| return Params( | |
| n_vocab = model["tok_embeddings.weight"].shape[0], | |
| n_embd = config["dim"], | |
| n_layer = config["n_layers"], | |
| n_ctx = n_ctx, | |
| n_ff = n_ff, | |
| n_head = (n_head := config["n_heads"]), | |
| n_head_kv = config.get("n_kv_heads", n_head), | |
| n_experts = n_experts, | |
| n_experts_used = n_experts_used, | |
| f_norm_eps = config["norm_eps"], | |
| f_rope_freq_base = config.get("rope_theta", f_rope_freq_base), | |
| ) | |
| def load(model_plus: ModelPlus) -> Params: | |
| hf_config_path = model_plus.paths[0].parent / "config.json" | |
| orig_config_path = model_plus.paths[0].parent / "params.json" | |
| if hf_config_path.exists(): | |
| params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) | |
| elif orig_config_path.exists(): | |
| params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) | |
| elif model_plus.format != 'none': | |
| params = Params.guessed(model_plus.model) | |
| else: | |
| raise ValueError('Cannot guess params when model format is none') | |
| params.path_model = model_plus.paths[0].parent | |
| return params | |
| # | |
| # vocab | |
| # | |
| class BaseVocab(Protocol): | |
| tokenizer_model: ClassVar[str] | |
| name: ClassVar[str] | |
| class NoVocab(BaseVocab): | |
| tokenizer_model = "no_vocab" | |
| name = "no_vocab" | |
| def __repr__(self) -> str: | |
| return "<NoVocab for a model without integrated vocabulary>" | |
| class Vocab(BaseVocab, Protocol): | |
| vocab_size: int | |
| added_tokens_dict: dict[str, int] | |
| added_tokens_list: list[str] | |
| fname_tokenizer: Path | |
| def __init__(self, base_path: Path): ... | |
| def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ... | |
| class BpeVocab(Vocab): | |
| tokenizer_model = "gpt2" | |
| name = "bpe" | |
| def __init__(self, base_path: Path): | |
| added_tokens: dict[str, int] = {} | |
| if (fname_tokenizer := base_path / 'vocab.json').exists(): | |
| # "slow" tokenizer | |
| with open(fname_tokenizer, encoding="utf-8") as f: | |
| self.vocab = json.load(f) | |
| try: | |
| # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab. | |
| with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f: | |
| added_tokens = json.load(f) | |
| except FileNotFoundError: | |
| pass | |
| else: | |
| # "fast" tokenizer | |
| fname_tokenizer = base_path / FAST_TOKENIZER_FILE | |
| # if this fails, FileNotFoundError propagates to caller | |
| with open(fname_tokenizer, encoding="utf-8") as f: | |
| tokenizer_json = json.load(f) | |
| tokenizer_model: dict[str, Any] = tokenizer_json['model'] | |
| if ( | |
| tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False) | |
| or tokenizer_json['decoder']['type'] != 'ByteLevel' | |
| ): | |
| raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer') | |
| self.vocab = tokenizer_model["vocab"] | |
| if (added := tokenizer_json.get('added_tokens')) is not None: | |
| # Added tokens here can be duplicates of the main vocabulary. | |
| added_tokens = {item['content']: item['id'] | |
| for item in added | |
| if item['content'] not in self.vocab} | |
| vocab_size = len(self.vocab) | |
| expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) | |
| actual_ids = sorted(added_tokens.values()) | |
| if expected_ids != actual_ids: | |
| expected_end_id = vocab_size + len(actual_ids) - 1 | |
| raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range " | |
| f"{vocab_size} - {expected_end_id}; got {actual_ids}") | |
| items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) | |
| self.added_tokens_dict = added_tokens | |
| self.added_tokens_list = [text for (text, idx) in items] | |
| self.vocab_size_base = vocab_size | |
| self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) | |
| self.fname_tokenizer = fname_tokenizer | |
| def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()} | |
| for i, _ in enumerate(self.vocab): | |
| yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL | |
| def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| for text in self.added_tokens_list: | |
| score = -1000.0 | |
| yield text.encode("utf-8"), score, gguf.TokenType.CONTROL | |
| def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| yield from self.bpe_tokens() | |
| yield from self.added_tokens() | |
| def __repr__(self) -> str: | |
| return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" | |
| class SentencePieceVocab(Vocab): | |
| tokenizer_model = "llama" | |
| name = "spm" | |
| def __init__(self, base_path: Path): | |
| added_tokens: dict[str, int] = {} | |
| if (fname_tokenizer := base_path / 'tokenizer.model').exists(): | |
| # normal location | |
| try: | |
| with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f: | |
| added_tokens = json.load(f) | |
| except FileNotFoundError: | |
| pass | |
| elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists(): | |
| # not found in alternate location either | |
| raise FileNotFoundError('Cannot find tokenizer.model') | |
| self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) | |
| vocab_size = self.sentencepiece_tokenizer.vocab_size() | |
| new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size} | |
| expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens))) | |
| actual_new_ids = sorted(new_tokens.keys()) | |
| if expected_new_ids != actual_new_ids: | |
| raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}") | |
| # Token pieces that were added to the base vocabulary. | |
| self.added_tokens_dict = added_tokens | |
| self.added_tokens_list = [new_tokens[id] for id in actual_new_ids] | |
| self.vocab_size_base = vocab_size | |
| self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) | |
| self.fname_tokenizer = fname_tokenizer | |
| def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| tokenizer = self.sentencepiece_tokenizer | |
| for i in range(tokenizer.vocab_size()): | |
| piece = tokenizer.id_to_piece(i) | |
| text = piece.encode("utf-8") | |
| score: float = tokenizer.get_score(i) | |
| toktype = gguf.TokenType.NORMAL | |
| if tokenizer.is_unknown(i): | |
| toktype = gguf.TokenType.UNKNOWN | |
| if tokenizer.is_control(i): | |
| toktype = gguf.TokenType.CONTROL | |
| # NOTE: I think added_tokens are user defined. | |
| # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto | |
| # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED | |
| if tokenizer.is_unused(i): | |
| toktype = gguf.TokenType.UNUSED | |
| if tokenizer.is_byte(i): | |
| toktype = gguf.TokenType.BYTE | |
| yield text, score, toktype | |
| def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| for text in self.added_tokens_list: | |
| score = -1000.0 | |
| yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED | |
| def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| yield from self.sentencepiece_tokens() | |
| yield from self.added_tokens() | |
| def __repr__(self) -> str: | |
| return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" | |
| class LlamaHfVocab(Vocab): | |
| tokenizer_model = "llama" | |
| name = "hfft" | |
| def __init__(self, base_path: Path): | |
| fname_tokenizer = base_path / FAST_TOKENIZER_FILE | |
| # if this fails, FileNotFoundError propagates to caller | |
| with open(fname_tokenizer, encoding='utf-8') as f: | |
| tokenizer_json = json.load(f) | |
| # pre-check so we know if we need transformers | |
| tokenizer_model: dict[str, Any] = tokenizer_json['model'] | |
| is_llama3 = ( | |
| tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False) | |
| and not tokenizer_model.get('byte_fallback', True) | |
| ) | |
| if is_llama3: | |
| raise TypeError('Llama 3 must be converted with BpeVocab') | |
| if not is_llama3 and ( | |
| tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False) | |
| or tokenizer_json['decoder']['type'] != 'Sequence' | |
| ): | |
| raise FileNotFoundError('Cannot find Llama BPE tokenizer') | |
| try: | |
| from transformers import AutoTokenizer | |
| except ImportError as e: | |
| raise ImportError( | |
| "To use LlamaHfVocab, please install the `transformers` package. " | |
| "You can install it with `pip install transformers`." | |
| ) from e | |
| # Allow the tokenizer to default to slow or fast versions. | |
| # Explicitly set tokenizer to use local paths. | |
| self.tokenizer = AutoTokenizer.from_pretrained( | |
| base_path, | |
| cache_dir=base_path, | |
| local_files_only=True, | |
| ) | |
| assert self.tokenizer.is_fast # assume tokenizer.json is used | |
| # Initialize lists and dictionaries for added tokens | |
| self.added_tokens_list = [] | |
| self.added_tokens_dict = dict() | |
| self.added_tokens_ids = set() | |
| # Process added tokens | |
| for tok, tokidx in sorted( | |
| self.tokenizer.get_added_vocab().items(), key=lambda x: x[1] | |
| ): | |
| # Only consider added tokens that are not in the base vocabulary | |
| if tokidx >= self.tokenizer.vocab_size: | |
| self.added_tokens_list.append(tok) | |
| self.added_tokens_dict[tok] = tokidx | |
| self.added_tokens_ids.add(tokidx) | |
| # Store special tokens and their IDs | |
| self.specials = { | |
| tok: self.tokenizer.get_vocab()[tok] | |
| for tok in self.tokenizer.all_special_tokens | |
| } | |
| self.special_ids = set(self.tokenizer.all_special_ids) | |
| # Set vocabulary sizes | |
| self.vocab_size_base = self.tokenizer.vocab_size | |
| self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) | |
| self.fname_tokenizer = fname_tokenizer | |
| def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| reverse_vocab = { | |
| id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items() | |
| } | |
| for token_id in range(self.vocab_size_base): | |
| # Skip processing added tokens here | |
| if token_id in self.added_tokens_ids: | |
| continue | |
| # Convert token text to bytes | |
| token_text = reverse_vocab[token_id].encode("utf-8") | |
| # Yield token text, score, and type | |
| yield token_text, self.get_token_score(token_id), self.get_token_type( | |
| token_id, token_text, self.special_ids # Reuse already stored special IDs | |
| ) | |
| def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType: | |
| # Special case for byte tokens | |
| if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text): | |
| return gguf.TokenType.BYTE | |
| # Determine token type based on whether it's a special token | |
| return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL | |
| def get_token_score(self, token_id: int) -> float: | |
| # Placeholder for actual logic to determine the token's score | |
| # This needs to be implemented based on specific requirements | |
| return -1000.0 # Default score | |
| def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| for text in self.added_tokens_list: | |
| if text in self.specials: | |
| toktype = self.get_token_type(self.specials[text], b'', self.special_ids) | |
| score = self.get_token_score(self.specials[text]) | |
| else: | |
| toktype = gguf.TokenType.USER_DEFINED | |
| score = -1000.0 | |
| yield text.encode("utf-8"), score, toktype | |
| def has_newline_token(self): | |
| return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab | |
| def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: | |
| yield from self.hf_tokens() | |
| yield from self.added_tokens() | |
| def __repr__(self) -> str: | |
| return f"<LlamaHfVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>" | |
| # | |
| # data loading | |
| # TODO: reuse (probably move to gguf.py?) | |
| # | |
| def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray: | |
| # print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) ) | |
| if n_head_kv is not None and n_head != n_head_kv: | |
| n_head = n_head_kv | |
| return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:]) | |
| .swapaxes(1, 2) | |
| .reshape(weights.shape)) | |
| class Tensor(ABC): | |
| ndarray: NDArray | |
| data_type: DataType | |
| def astype(self, data_type: DataType) -> Self: ... | |
| def permute(self, n_head: int, n_head_kv: int) -> Self: ... | |
| def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> Self: ... | |
| def part(self, n_part: int) -> Self: ... | |
| def to_ggml(self) -> GGMLCompatibleTensor: ... | |
| def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray: | |
| assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}" | |
| fp32_arr = bf16_arr.astype(np.uint32) << 16 | |
| return fp32_arr.view(np.float32) | |
| class UnquantizedTensor(Tensor): | |
| def __init__(self, ndarray: NDArray): | |
| assert isinstance(ndarray, np.ndarray) | |
| self.ndarray = ndarray | |
| self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype] | |
| def astype(self, data_type: DataType) -> UnquantizedTensor: | |
| dtype = data_type.dtype | |
| if self.data_type == DT_BF16: | |
| self.ndarray = bf16_to_fp32(self.ndarray) | |
| return UnquantizedTensor(self.ndarray.astype(dtype)) | |
| def to_ggml(self) -> Self: | |
| return self | |
| def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> UnquantizedTensor: | |
| r = self.ndarray.shape[0] // 3 | |
| return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv)) | |
| def part(self, n_part: int) -> UnquantizedTensor: | |
| r = self.ndarray.shape[0] // 3 | |
| return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...]) | |
| def permute(self, n_head: int, n_head_kv: int) -> UnquantizedTensor: | |
| return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv)) | |
| def load_unquantized(lazy_tensor: LazyTensor, expected_dtype: Any = None, convert: bool = False) -> NDArray: | |
| tensor = lazy_tensor.load() | |
| assert isinstance(tensor, UnquantizedTensor) | |
| # double-check: | |
| actual_shape = list(tensor.ndarray.shape) | |
| assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape) | |
| if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype: | |
| if convert: | |
| tensor.ndarray = tensor.ndarray.astype(expected_dtype) | |
| else: | |
| raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}') | |
| return tensor.ndarray | |
| GGMLCompatibleTensor = UnquantizedTensor | |
| class LazyTensor: | |
| _load: Callable[[], Tensor] | |
| shape: list[int] | |
| data_type: DataType | |
| description: str | |
| def load(self) -> Tensor: | |
| ret = self._load() | |
| # Should be okay if it maps to the same numpy type? | |
| assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \ | |
| (self.data_type, ret.data_type, self.description) | |
| return ret | |
| def astype(self, data_type: DataType) -> LazyTensor: | |
| self.validate_conversion_to(data_type) | |
| def load() -> Tensor: | |
| return self.load().astype(data_type) | |
| return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}') | |
| def validate_conversion_to(self, data_type: DataType) -> None: | |
| if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions: | |
| raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.') | |
| LazyModel: TypeAlias = 'dict[str, LazyTensor]' | |
| class ModelPlus: | |
| model: LazyModel | |
| paths: list[Path] # Where this was read from. | |
| format: Literal['ggml', 'torch', 'safetensors', 'none'] | |
| vocab: BaseVocab | None # For GGML models (which have vocab built in), the vocab. | |
| def merge_sharded(models: list[LazyModel]) -> LazyModel: | |
| # Original LLaMA models have each file contain one part of each tensor. | |
| # Use a dict instead of a set to preserve order. | |
| names = {name: None for model in models for name in model} | |
| def convert(name: str) -> LazyTensor: | |
| lazy_tensors = [model[name] for model in models] | |
| if len(lazy_tensors) == 1: | |
| # only one file; don't go through this procedure since there might | |
| # be quantized tensors | |
| return lazy_tensors[0] | |
| if len(lazy_tensors[0].shape) == 1: | |
| # the tensor is just duplicated in every file | |
| return lazy_tensors[0] | |
| if name.startswith('tok_embeddings.') or \ | |
| name.endswith('.attention.wo.weight') or \ | |
| name.endswith('.feed_forward.w2.weight'): | |
| # split by columns | |
| axis = 1 | |
| else: | |
| # split by rows | |
| axis = 0 | |
| concatenated_shape = list(lazy_tensors[0].shape) | |
| concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors) | |
| def load() -> UnquantizedTensor: | |
| ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors] | |
| concatenated = np.concatenate(ndarrays, axis=axis) | |
| return UnquantizedTensor(concatenated) | |
| description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]' | |
| return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description) | |
| return {name: convert(name) for name in names} | |
| def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: | |
| formats = set(mp.format for mp in models_plus) | |
| assert len(formats) == 1, "different formats?" | |
| format = formats.pop() | |
| paths = [path for mp in models_plus for path in mp.paths] | |
| # Use the first non-None vocab, if any. | |
| try: | |
| vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None) | |
| except StopIteration: | |
| vocab = None | |
| if any("model.embed_tokens.weight" in mp.model for mp in models_plus): | |
| # Transformers models put different tensors in different files, but | |
| # don't split individual tensors between files. | |
| model: LazyModel = {} | |
| for mp in models_plus: | |
| model.update(mp.model) | |
| else: | |
| model = merge_sharded([mp.model for mp in models_plus]) | |
| return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types | |
| def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor: | |
| def load() -> Tensor: | |
| return lazy_tensor.load().permute(n_head, n_head_kv) | |
| return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) | |
| def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor: | |
| def load() -> Tensor: | |
| return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv) | |
| s = lazy_tensor.shape.copy() | |
| s[0] = s[0] // 3 | |
| return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description) | |
| def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor: | |
| def load() -> Tensor: | |
| return lazy_tensor.load().part(n_part) | |
| s = lazy_tensor.shape.copy() | |
| s[0] = s[0] // 3 | |
| return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description) | |
| def pack_experts_lazy(lazy_tensors: list[LazyTensor]) -> LazyTensor: | |
| def load() -> Tensor: | |
| tensors = [lazy_tensor.load() for lazy_tensor in lazy_tensors] | |
| return UnquantizedTensor(np.array([tensor.ndarray for tensor in tensors])) | |
| s = lazy_tensors[0].shape.copy() | |
| s.insert(0, len(lazy_tensors)) | |
| return LazyTensor(load, s, lazy_tensors[0].data_type, 'pack_experts ' + ' | '.join(lt.description for lt in lazy_tensors)) | |
| # Functionality that simulates `torch.load` but where individual tensors are | |
| # only loaded into memory on demand, not all at once. | |
| # PyTorch can't do this natively as of time of writing: | |
| # - https://github.com/pytorch/pytorch/issues/64327 | |
| # This allows us to de-shard without multiplying RAM usage, and also | |
| # conveniently drops the PyTorch dependency (though we still need numpy). | |
| class LazyStorageKind: | |
| data_type: DataType | |
| class LazyStorage: | |
| load: Callable[[int, int], NDArray] | |
| kind: LazyStorageKind | |
| description: str | |
| class LazyUnpickler(pickle.Unpickler): | |
| def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile): | |
| super().__init__(fp) | |
| self.data_base_path = data_base_path | |
| self.zip_file = zip_file | |
| def persistent_load(self, pid: Any) -> Any: | |
| assert pid[0] == 'storage' | |
| assert isinstance(pid[1], LazyStorageKind) | |
| data_type = pid[1].data_type | |
| filename_stem = pid[2] | |
| filename = f'{self.data_base_path}/{filename_stem}' | |
| info = self.zip_file.getinfo(filename) | |
| def load(offset: int, elm_count: int) -> NDArray: | |
| dtype = data_type.dtype | |
| with self.zip_file.open(info) as fp: | |
| fp.seek(offset * dtype.itemsize) | |
| size = elm_count * dtype.itemsize | |
| data = fp.read(size) | |
| assert len(data) == size | |
| return np.frombuffer(data, dtype) | |
| description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}' | |
| return LazyStorage(load=load, kind=pid[1], description=description) | |
| def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any, | |
| requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor: | |
| assert isinstance(storage, LazyStorage) | |
| def load() -> UnquantizedTensor: | |
| elm_count = stride[0] * size[0] | |
| return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size)) | |
| description = f'pickled storage_offset={storage_offset} in {storage.description}' | |
| return LazyTensor(load, list(size), storage.kind.data_type, description) | |
| def rebuild_from_type_v2(func, new_type, args, state): | |
| return func(*args) | |
| CLASSES = { | |
| # getattr used here as a workaround for mypy not being smart enough to determine | |
| # the staticmethods have a __func__ attribute. | |
| ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'), | |
| ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'), | |
| ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), | |
| ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), | |
| ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), | |
| ('torch', 'IntStorage'): LazyStorageKind(DT_I32), | |
| ('torch', 'Tensor'): LazyTensor, | |
| } | |
| def find_class(self, module: str, name: str) -> Any: | |
| if not module.startswith('torch'): | |
| return super().find_class(module, name) | |
| return self.CLASSES[(module, name)] | |
| def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus: | |
| zf = zipfile.ZipFile(outer_fp) | |
| pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')] | |
| assert len(pickle_paths) == 1, pickle_paths | |
| pickle_fp = zf.open(pickle_paths[0], 'r') | |
| unpickler = LazyUnpickler(pickle_fp, | |
| data_base_path=pickle_paths[0][:-4], | |
| zip_file=zf) | |
| model = unpickler.load() | |
| if 'model' in model: model = model['model'] | |
| as_dict = dict(model.items()) | |
| return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None) | |
| def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus: | |
| header_size, = struct.unpack('<Q', fp.read(8)) | |
| header: dict[str, dict[str, Any]] = json.loads(fp.read(header_size)) | |
| # Use mmap for the actual data to avoid race conditions with the file offset. | |
| mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ)) | |
| byte_buf = mapped[8 + header_size:] | |
| def convert(info: dict[str, Any]) -> LazyTensor: | |
| data_type = SAFETENSORS_DATA_TYPES[info['dtype']] | |
| numpy_dtype = data_type.dtype | |
| shape: list[int] = info['shape'] | |
| begin, end = info['data_offsets'] | |
| assert 0 <= begin <= end <= len(byte_buf) | |
| assert end - begin == math.prod(shape) * numpy_dtype.itemsize | |
| buf = byte_buf[begin:end] | |
| def load() -> UnquantizedTensor: | |
| return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape)) | |
| description = f'safetensors begin={begin} end={end} type={data_type} path={path}' | |
| return LazyTensor(load, shape, data_type, description) | |
| model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'} | |
| return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None) | |
| def must_read(fp: IO[bytes], length: int) -> bytes: | |
| ret = fp.read(length) | |
| if len(ret) < length: | |
| raise EOFError("unexpectedly reached end of file") | |
| return ret | |
| def lazy_load_file(path: Path) -> ModelPlus: | |
| fp = open(path, 'rb') | |
| first8 = fp.read(8) | |
| fp.seek(0) | |
| if first8[:2] == b'PK': | |
| # A zip file, i.e. PyTorch format | |
| return lazy_load_torch_file(fp, path) | |
| elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024: | |
| # Probably safetensors | |
| return lazy_load_safetensors_file(fp, path) | |
| else: | |
| raise ValueError(f"unknown format: {path}") | |
| In = TypeVar('In') | |
| Out = TypeVar('Out') | |
| def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: int | None = None, use_processpool_executor: bool = False) -> Iterable[Out]: | |
| '''Parallel map, but with backpressure. If the caller doesn't call `next` | |
| fast enough, this will stop calling `func` at some point rather than | |
| letting results pile up in memory. Specifically, there is a max of one | |
| output value buffered per thread.''' | |
| if concurrency < 2: | |
| yield from map(func, iterable) | |
| # Not reached. | |
| iterable = iter(iterable) | |
| executor_class: type[ThreadPoolExecutor] | type[ProcessPoolExecutor] | |
| if use_processpool_executor: | |
| executor_class = ProcessPoolExecutor | |
| else: | |
| executor_class = ThreadPoolExecutor | |
| with executor_class(max_workers=max_workers) as executor: | |
| futures: list[concurrent.futures.Future[Out]] = [] | |
| done = False | |
| for _ in range(concurrency): | |
| try: | |
| futures.append(executor.submit(func, next(iterable))) | |
| except StopIteration: | |
| done = True | |
| break | |
| while futures: | |
| result = futures.pop(0).result() | |
| while not done and len(futures) < concurrency: | |
| try: | |
| futures.append(executor.submit(func, next(iterable))) | |
| except StopIteration: | |
| done = True | |
| break | |
| yield result | |
| def check_vocab_size(params: Params, vocab: BaseVocab, pad_vocab: bool = False) -> None: | |
| # Handle special case where the model's vocab size is not set | |
| if params.n_vocab == -1: | |
| raise ValueError( | |
| "The model's vocab size is set to -1 in params.json. Please update it manually." | |
| + (f" Maybe {vocab.vocab_size}?" if isinstance(vocab, Vocab) else ""), | |
| ) | |
| if not isinstance(vocab, Vocab): | |
| return # model has no vocab | |
| # Check for a vocab size mismatch | |
| if params.n_vocab == vocab.vocab_size: | |
| print("Ignoring added_tokens.json since model matches vocab size without it.") | |
| return | |
| if pad_vocab and params.n_vocab > vocab.vocab_size: | |
| pad_count = params.n_vocab - vocab.vocab_size | |
| print( | |
| f"Padding vocab with {pad_count} token(s) - <dummy00001> through <dummy{pad_count:05}>" | |
| ) | |
| for i in range(1, pad_count + 1): | |
| vocab.added_tokens_dict[f"<dummy{i:05}>"] = -1 | |
| vocab.added_tokens_list.append(f"<dummy{i:05}>") | |
| vocab.vocab_size = params.n_vocab | |
| return | |
| msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer} has {vocab.vocab_size})." | |
| if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20: | |
| msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})." | |
| if vocab.vocab_size < params.n_vocab: | |
| msg += " Add the --pad-vocab option and try again." | |
| raise ValueError(msg) | |
| class OutputFile: | |
| def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE): | |
| self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) | |
| def add_meta_arch(self, params: Params) -> None: | |
| name = "LLaMA" | |
| # TODO: better logic to determine model name | |
| if params.n_ctx == 4096: | |
| name = "LLaMA v2" | |
| elif params.path_model is not None: | |
| name = str(params.path_model.parent).split('/')[-1] | |
| self.gguf.add_name (name) | |
| self.gguf.add_vocab_size (params.n_vocab) | |
| self.gguf.add_context_length (params.n_ctx) | |
| self.gguf.add_embedding_length (params.n_embd) | |
| self.gguf.add_block_count (params.n_layer) | |
| self.gguf.add_feed_forward_length (params.n_ff) | |
| self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) | |
| self.gguf.add_head_count (params.n_head) | |
| self.gguf.add_head_count_kv (params.n_head_kv) | |
| if params.n_experts: | |
| self.gguf.add_expert_count(params.n_experts) | |
| if params.n_experts_used: | |
| self.gguf.add_expert_used_count(params.n_experts_used) | |
| if params.f_norm_eps: | |
| self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) | |
| else: | |
| raise ValueError('f_norm_eps is None') | |
| if params.f_rope_freq_base is not None: | |
| self.gguf.add_rope_freq_base(params.f_rope_freq_base) | |
| if params.rope_scaling_type: | |
| assert params.f_rope_scale is not None | |
| self.gguf.add_rope_scaling_type(params.rope_scaling_type) | |
| self.gguf.add_rope_scaling_factor(params.f_rope_scale) | |
| if params.n_orig_ctx is not None: | |
| self.gguf.add_rope_scaling_orig_ctx_len(params.n_orig_ctx) | |
| if params.rope_finetuned is not None: | |
| self.gguf.add_rope_scaling_finetuned(params.rope_finetuned) | |
| if params.ftype is not None: | |
| self.gguf.add_file_type(params.ftype) | |
| def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]: | |
| tokens = [] | |
| scores = [] | |
| toktypes = [] | |
| # NOTE: `all_tokens` returns the base vocabulary and added tokens | |
| for text, score, toktype in vocab.all_tokens(): | |
| tokens.append(text) | |
| scores.append(score) | |
| toktypes.append(toktype) | |
| assert len(tokens) == vocab.vocab_size | |
| return tokens, scores, toktypes | |
| def add_meta_vocab(self, vocab: Vocab) -> None: | |
| # Ensure that tokenizer_model is added to the GGUF model | |
| self.gguf.add_tokenizer_model(vocab.tokenizer_model) | |
| # Extract model vocabulary for model conversion | |
| tokens, scores, toktypes = self.extract_vocabulary_from_model(vocab) | |
| # Add extracted token information for model conversion | |
| self.gguf.add_token_list(tokens) | |
| self.gguf.add_token_scores(scores) | |
| self.gguf.add_token_types(toktypes) | |
| def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None: | |
| svocab.add_to_gguf(self.gguf) | |
| def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: | |
| n_elements = int(np.prod(tensor.shape)) | |
| raw_dtype = getattr(tensor.data_type, 'ggml_type', None) | |
| data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype | |
| data_nbytes = tensor.data_type.elements_to_bytes(n_elements) | |
| self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype) | |
| def write_meta(self) -> None: | |
| self.gguf.write_header_to_file() | |
| self.gguf.write_kv_data_to_file() | |
| def write_tensor_info(self) -> None: | |
| self.gguf.write_ti_data_to_file() | |
| def write_tensor_data(self, ftype: GGMLFileType, model: LazyModel, concurrency: int) -> None: | |
| ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency=concurrency) | |
| if ftype == GGMLFileType.MostlyQ8_0: | |
| ndarrays = bounded_parallel_map( | |
| OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency, | |
| use_processpool_executor=True, | |
| ) | |
| else: | |
| ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) | |
| start = time.time() | |
| for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): | |
| elapsed = time.time() - start | |
| size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) | |
| padi = len(str(len(model))) | |
| print( | |
| f"[{i + 1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" | |
| ) | |
| self.gguf.write_tensor_data(ndarray) | |
| def close(self) -> None: | |
| self.gguf.close() | |
| def write_vocab_only( | |
| fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, | |
| endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, | |
| ) -> None: | |
| check_vocab_size(params, vocab, pad_vocab=pad_vocab) | |
| of = OutputFile(fname_out, endianess=endianess) | |
| # meta data | |
| of.add_meta_arch(params) | |
| of.add_meta_vocab(vocab) | |
| of.add_meta_special_vocab(svocab) | |
| of.write_meta() | |
| of.close() | |
| def do_item(item: tuple[str, LazyTensor]) -> tuple[DataType, NDArray]: | |
| name, lazy_tensor = item | |
| tensor = lazy_tensor.load().to_ggml() | |
| return (lazy_tensor.data_type, tensor.ndarray) | |
| def maybe_do_quantize(item: tuple[DataType, NDArray]) -> NDArray: | |
| dt, arr = item | |
| if not isinstance(dt, QuantizedDataType): | |
| return arr | |
| return dt.quantize(arr) | |
| def write_all( | |
| fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab, | |
| concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, | |
| pad_vocab: bool = False, | |
| ) -> None: | |
| check_vocab_size(params, vocab, pad_vocab=pad_vocab) | |
| of = OutputFile(fname_out, endianess=endianess) | |
| # meta data | |
| of.add_meta_arch(params) | |
| if isinstance(vocab, Vocab): | |
| of.add_meta_vocab(vocab) | |
| of.add_meta_special_vocab(svocab) | |
| else: # NoVocab | |
| of.gguf.add_tokenizer_model(vocab.tokenizer_model) | |
| # tensor info | |
| for name, lazy_tensor in model.items(): | |
| of.add_tensor_info(name, lazy_tensor) | |
| of.write_meta() | |
| of.write_tensor_info() | |
| # tensor data | |
| of.write_tensor_data(ftype, model, concurrency) | |
| of.close() | |
| def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType: | |
| wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0) + ".weight"].data_type | |
| if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)): | |
| return GGMLFileType.AllF32 | |
| if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16): | |
| return GGMLFileType.MostlyF16 | |
| if output_type_str == "q8_0": | |
| return GGMLFileType.MostlyQ8_0 | |
| name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()} | |
| raise ValueError(f"Unexpected combination of types: {name_to_type}") | |
| def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel: | |
| return {name: tensor.astype(output_type.type_for_tensor(name, tensor)) | |
| for (name, tensor) in model.items()} | |
| def convert_model_names(model: LazyModel, params: Params, skip_unknown: bool) -> LazyModel: | |
| tmap = gguf.TensorNameMap(ARCH, params.n_layer) | |
| should_skip = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, [])) | |
| tmp = model | |
| # merge experts into one tensor | |
| if params.n_experts and params.n_experts > 0: | |
| for i_l in range(params.n_layer): | |
| for w in range(1, 4): | |
| experts = [] | |
| for e in range(params.n_experts): | |
| if f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight" in model: | |
| experts.append(model[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"]) | |
| del tmp[f"layers.{i_l}.feed_forward.experts.{e}.w{w}.weight"] | |
| elif f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight" in model: | |
| experts.append(model[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"]) | |
| del tmp[f"model.layers.{i_l}.block_sparse_moe.experts.{e}.w{w}.weight"] | |
| else: | |
| raise ValueError(f"Expert tensor not found: layers.{i_l}.feed_forward.experts.{e}.w{w}.weight") | |
| tmp[f"layers.{i_l}.feed_forward.experts.w{w}.weight"] = pack_experts_lazy(experts) | |
| # HF models permut or pack some of the tensors, so we need to undo that | |
| for i in itertools.count(): | |
| if f"model.layers.{i}.self_attn.q_proj.weight" in model: | |
| print(f"Permuting layer {i}") | |
| tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head) | |
| tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv) | |
| # tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"] | |
| elif f"model.layers.{i}.self_attn.W_pack.weight" in model: | |
| print(f"Unpacking and permuting layer {i}") | |
| tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head) | |
| tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv) | |
| tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2) | |
| del tmp[f"model.layers.{i}.self_attn.W_pack.weight"] | |
| else: | |
| break | |
| out: LazyModel = {} | |
| for name, lazy_tensor in model.items(): | |
| tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None) | |
| if name_new is None: | |
| if skip_unknown: | |
| print(f"Unexpected tensor name: {name} - skipping") | |
| continue | |
| raise ValueError(f"Unexpected tensor name: {name}. Use --skip-unknown to ignore it (e.g. LLaVA)") | |
| if tensor_type in should_skip: | |
| print(f"skipping tensor {name_new}") | |
| continue | |
| print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}") | |
| out[name_new] = lazy_tensor | |
| return out | |
| def nth_multifile_path(path: Path, n: int) -> Path | None: | |
| '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | |
| the nth path in the model. | |
| ''' | |
| # Support the following patterns: | |
| patterns = [ | |
| # - x.00.pth, x.01.pth, etc. | |
| (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'), | |
| # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc. | |
| (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'), | |
| # x.bin, x.bin.1, etc. | |
| (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}') | |
| ] | |
| for regex, replacement in patterns: | |
| if re.search(regex, path.name): | |
| new_path = path.with_name(re.sub(regex, replacement, path.name)) | |
| if new_path.exists(): | |
| return new_path | |
| return None | |
| def find_multifile_paths(path: Path) -> list[Path]: | |
| '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return | |
| the whole list of paths in the model. | |
| ''' | |
| ret: list[Path] = [] | |
| for i in itertools.count(): | |
| nth_path = nth_multifile_path(path, i) | |
| if nth_path is None: | |
| break | |
| ret.append(nth_path) | |
| if not ret: | |
| # No matches. This should only happen if the file was named, e.g., | |
| # foo.0, and there was no file named foo. Oh well, try to process it | |
| # as a single file. | |
| return [path] | |
| return ret | |
| def load_some_model(path: Path) -> ModelPlus: | |
| '''Load a model of any supported format.''' | |
| # Be extra-friendly and accept either a file or a directory: | |
| if path.is_dir(): | |
| # Check if it's a set of safetensors files first | |
| globs = ["model-00001-of-*.safetensors", "model.safetensors", "consolidated.safetensors"] | |
| files = [file for glob in globs for file in path.glob(glob)] | |
| if not files: | |
| # Try the PyTorch patterns too, with lower priority | |
| globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"] | |
| files = [file for glob in globs for file in path.glob(glob)] | |
| if not files: | |
| raise FileNotFoundError(f"Can't find model in directory {path}") | |
| if len(files) > 1: | |
| raise ValueError(f"Found multiple models in {path}, not sure which to pick: {files}") | |
| path = files[0] | |
| paths = find_multifile_paths(path) | |
| models_plus: list[ModelPlus] = [] | |
| for path in paths: | |
| print(f"Loading model file {path}") | |
| models_plus.append(lazy_load_file(path)) | |
| model_plus = merge_multifile_models(models_plus) | |
| return model_plus | |
| class VocabFactory: | |
| _VOCAB_CLASSES: list[type[Vocab]] = [SentencePieceVocab, BpeVocab, LlamaHfVocab] | |
| def __init__(self, path: Path): | |
| self.path = path | |
| def _create_special_vocab(self, vocab: BaseVocab, model_parent_path: Path) -> gguf.SpecialVocab: | |
| load_merges = vocab.name == "bpe" | |
| n_vocab = vocab.vocab_size if isinstance(vocab, Vocab) else None | |
| return gguf.SpecialVocab( | |
| model_parent_path, | |
| load_merges=load_merges, | |
| special_token_types=None, # Predetermined or passed as a parameter | |
| n_vocab=n_vocab, | |
| ) | |
| def _create_vocab_by_path(self, vocab_types: list[str]) -> Vocab: | |
| vocab_classes: dict[str, type[Vocab]] = {cls.name: cls for cls in self._VOCAB_CLASSES} | |
| selected_vocabs: dict[str, type[Vocab]] = {} | |
| for vtype in vocab_types: | |
| try: | |
| selected_vocabs[vtype] = vocab_classes[vtype] | |
| except KeyError: | |
| raise ValueError(f"Unsupported vocabulary type {vtype}") from None | |
| for vtype, cls in selected_vocabs.items(): | |
| try: | |
| vocab = cls(self.path) | |
| break | |
| except FileNotFoundError: | |
| pass # ignore unavailable tokenizers | |
| else: | |
| raise FileNotFoundError(f"Could not find a tokenizer matching any of {vocab_types}") | |
| print(f"Loaded vocab file {vocab.fname_tokenizer!r}, type {vocab.name!r}") | |
| return vocab | |
| def load_vocab(self, vocab_types: list[str] | None, model_parent_path: Path) -> tuple[BaseVocab, gguf.SpecialVocab]: | |
| vocab: BaseVocab | |
| if vocab_types is None: | |
| vocab = NoVocab() | |
| else: | |
| vocab = self._create_vocab_by_path(vocab_types) | |
| # FIXME: Respect --vocab-dir? | |
| special_vocab = self._create_special_vocab( | |
| vocab, | |
| model_parent_path, | |
| ) | |
| return vocab, special_vocab | |
| def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path: | |
| namestr = { | |
| GGMLFileType.AllF32: "f32", | |
| GGMLFileType.MostlyF16: "f16", | |
| GGMLFileType.MostlyQ8_0:"q8_0", | |
| }[file_type] | |
| ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" | |
| if ret in model_paths: | |
| sys.stderr.write( | |
| f"Error: Default output path ({ret}) would overwrite the input. " | |
| "Please explicitly specify a path using --outfile.\n") | |
| sys.exit(1) | |
| return ret | |
| def do_dump_model(model_plus: ModelPlus) -> None: | |
| print(f"model_plus.paths = {model_plus.paths!r}") | |
| print(f"model_plus.format = {model_plus.format!r}") | |
| print(f"model_plus.vocab = {model_plus.vocab!r}") | |
| for name, lazy_tensor in model_plus.model.items(): | |
| print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") | |
| def main(args_in: list[str] | None = None) -> None: | |
| output_choices = ["f32", "f16"] | |
| if np.uint32(1) == np.uint32(1).newbyteorder("<"): | |
| # We currently only support Q8_0 output on little endian systems. | |
| output_choices.append("q8_0") | |
| parser = argparse.ArgumentParser(description="Convert a LLaMA model to a GGML compatible file") | |
| parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") | |
| parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") | |
| parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") | |
| parser.add_argument("--no-vocab", action="store_true", help="store model without the vocab") | |
| parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") | |
| parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") | |
| parser.add_argument("--vocab-type", help="vocab types to try in order, choose from 'spm', 'bpe', 'hfft' (default: spm,hfft)", default="spm,hfft") | |
| parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") | |
| parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") | |
| parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") | |
| parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY) | |
| parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine") | |
| parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") | |
| parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing") | |
| args = parser.parse_args(args_in) | |
| if args.no_vocab and args.vocab_only: | |
| raise ValueError("--vocab-only does not make sense with --no-vocab") | |
| if args.dump_single: | |
| model_plus = lazy_load_file(args.model) | |
| do_dump_model(model_plus) | |
| return | |
| if not args.vocab_only: | |
| model_plus = load_some_model(args.model) | |
| else: | |
| model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) | |
| if args.dump: | |
| do_dump_model(model_plus) | |
| return | |
| endianess = gguf.GGUFEndian.LITTLE | |
| if args.big_endian: | |
| endianess = gguf.GGUFEndian.BIG | |
| params = Params.load(model_plus) | |
| if params.n_ctx == -1: | |
| if args.ctx is None: | |
| msg = """\ | |
| The model doesn't have a context size, and you didn't specify one with --ctx | |
| Please specify one with --ctx: | |
| - LLaMA v1: --ctx 2048 | |
| - LLaMA v2: --ctx 4096""" | |
| parser.error(textwrap.dedent(msg)) | |
| params.n_ctx = args.ctx | |
| if args.outtype: | |
| params.ftype = { | |
| "f32": GGMLFileType.AllF32, | |
| "f16": GGMLFileType.MostlyF16, | |
| "q8_0": GGMLFileType.MostlyQ8_0, | |
| }[args.outtype] | |
| print(f"params = {params}") | |
| model_parent_path = model_plus.paths[0].parent | |
| vocab_path = Path(args.vocab_dir or args.model or model_parent_path) | |
| vocab_factory = VocabFactory(vocab_path) | |
| vocab_types = None if args.no_vocab else args.vocab_type.split(",") | |
| vocab, special_vocab = vocab_factory.load_vocab(vocab_types, model_parent_path) | |
| if args.vocab_only: | |
| assert isinstance(vocab, Vocab) | |
| if not args.outfile: | |
| raise ValueError("need --outfile if using --vocab-only") | |
| outfile = args.outfile | |
| OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, | |
| endianess=endianess, pad_vocab=args.pad_vocab) | |
| print(f"Wrote {outfile}") | |
| return | |
| if model_plus.vocab is not None and args.vocab_dir is None and not args.no_vocab: | |
| vocab = model_plus.vocab | |
| print(f"Vocab info: {vocab}") | |
| print(f"Special vocab info: {special_vocab}") | |
| model = model_plus.model | |
| model = convert_model_names(model, params, args.skip_unknown) | |
| ftype = pick_output_type(model, args.outtype) | |
| model = convert_to_output_type(model, ftype) | |
| outfile = args.outfile or default_outfile(model_plus.paths, ftype) | |
| params.ftype = ftype | |
| print(f"Writing {outfile}, format {ftype}") | |
| OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, | |
| concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab) | |
| print(f"Wrote {outfile}") | |
| if __name__ == '__main__': | |
| main() | |