Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| from __future__ import annotations | |
| import json | |
| import os | |
| import struct | |
| import sys | |
| from pathlib import Path | |
| from typing import Any, BinaryIO, Sequence | |
| import numpy as np | |
| import torch | |
| if 'NO_LOCAL_GGUF' not in os.environ: | |
| sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) | |
| import gguf | |
| NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} | |
| def write_file_header(fout: BinaryIO, params: dict[str, Any]) -> None: | |
| fout.write(b"ggla"[::-1]) # magic (ggml lora) | |
| fout.write(struct.pack("i", 1)) # file version | |
| fout.write(struct.pack("i", params["r"])) | |
| # https://opendelta.readthedocs.io/en/latest/modules/deltas.html says that `lora_alpha` is an int | |
| # but some models ship a float value instead | |
| # let's convert to int, but fail if lossless conversion is not possible | |
| assert ( | |
| int(params["lora_alpha"]) == params["lora_alpha"] | |
| ), "cannot convert float to int losslessly" | |
| fout.write(struct.pack("i", int(params["lora_alpha"]))) | |
| def write_tensor_header(fout: BinaryIO, name: str, shape: Sequence[int], data_type: np.dtype[Any]) -> None: | |
| sname = name.encode("utf-8") | |
| fout.write( | |
| struct.pack( | |
| "iii", | |
| len(shape), | |
| len(sname), | |
| NUMPY_TYPE_TO_FTYPE[data_type.name], | |
| ) | |
| ) | |
| fout.write(struct.pack("i" * len(shape), *shape[::-1])) | |
| fout.write(sname) | |
| fout.seek((fout.tell() + 31) & -32) | |
| if __name__ == '__main__': | |
| if len(sys.argv) < 2: | |
| print(f"Usage: python {sys.argv[0]} <path> [arch]") | |
| print( | |
| "Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'" | |
| ) | |
| print(f"Arch must be one of {list(gguf.MODEL_ARCH_NAMES.values())} (default: llama)") | |
| sys.exit(1) | |
| input_json = os.path.join(sys.argv[1], "adapter_config.json") | |
| input_model = os.path.join(sys.argv[1], "adapter_model.bin") | |
| output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") | |
| if os.path.exists(input_model): | |
| model = torch.load(input_model, map_location="cpu") | |
| else: | |
| input_model = os.path.join(sys.argv[1], "adapter_model.safetensors") | |
| # lazy import load_file only if lora is in safetensors format. | |
| from safetensors.torch import load_file | |
| model = load_file(input_model, device="cpu") | |
| arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" | |
| if arch_name not in gguf.MODEL_ARCH_NAMES.values(): | |
| print(f"Error: unsupported architecture {arch_name}") | |
| sys.exit(1) | |
| arch = list(gguf.MODEL_ARCH_NAMES.keys())[list(gguf.MODEL_ARCH_NAMES.values()).index(arch_name)] | |
| name_map = gguf.TensorNameMap(arch, 200) # 200 layers ought to be enough for anyone | |
| with open(input_json, "r") as f: | |
| params = json.load(f) | |
| if params["peft_type"] != "LORA": | |
| print(f"Error: unsupported adapter type {params['peft_type']}, expected LORA") | |
| sys.exit(1) | |
| if params["fan_in_fan_out"] is True: | |
| print("Error: param fan_in_fan_out is not supported") | |
| sys.exit(1) | |
| if params["bias"] is not None and params["bias"] != "none": | |
| print("Error: param bias is not supported") | |
| sys.exit(1) | |
| # TODO: these seem to be layers that have been trained but without lora. | |
| # doesn't seem widely used but eventually should be supported | |
| if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0: | |
| print("Error: param modules_to_save is not supported") | |
| sys.exit(1) | |
| with open(output_path, "wb") as fout: | |
| fout.truncate() | |
| write_file_header(fout, params) | |
| for k, v in model.items(): | |
| orig_k = k | |
| if k.endswith(".default.weight"): | |
| k = k.replace(".default.weight", ".weight") | |
| if k in ["llama_proj.weight", "llama_proj.bias"]: | |
| continue | |
| if k.endswith("lora_A.weight"): | |
| if v.dtype != torch.float16 and v.dtype != torch.float32: | |
| v = v.float() | |
| v = v.T | |
| else: | |
| v = v.float() | |
| t = v.detach().numpy() | |
| prefix = "base_model.model." | |
| if k.startswith(prefix): | |
| k = k[len(prefix) :] | |
| lora_suffixes = (".lora_A.weight", ".lora_B.weight") | |
| if k.endswith(lora_suffixes): | |
| suffix = k[-len(lora_suffixes[0]):] | |
| k = k[: -len(lora_suffixes[0])] | |
| else: | |
| print(f"Error: unrecognized tensor name {orig_k}") | |
| sys.exit(1) | |
| tname = name_map.get_name(k) | |
| if tname is None: | |
| print(f"Error: could not map tensor name {orig_k}") | |
| print(" Note: the arch parameter must be specified if the model is not llama") | |
| sys.exit(1) | |
| if suffix == ".lora_A.weight": | |
| tname += ".weight.loraA" | |
| elif suffix == ".lora_B.weight": | |
| tname += ".weight.loraB" | |
| else: | |
| assert False | |
| print(f"{k} => {tname} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB") | |
| write_tensor_header(fout, tname, t.shape, t.dtype) | |
| t.tofile(fout) | |
| print(f"Converted {input_json} and {input_model} to {output_path}") | |