Spaces:
Runtime error
Runtime error
| # This script downloads the tokenizer models of the specified models from Huggingface and | |
| # generates the get_vocab_base_pre() function for convert-hf-to-gguf.py | |
| # | |
| # This is necessary in order to analyze the type of pre-tokenizer used by the model and | |
| # provide the necessary information to llama.cpp via the GGUF header in order to implement | |
| # the same pre-tokenizer. | |
| # | |
| # ref: https://github.com/ggerganov/llama.cpp/pull/6920 | |
| # | |
| # Instructions: | |
| # | |
| # - Add a new model to the "models" list | |
| # - Run the script with your huggingface token: | |
| # | |
| # python3 convert-hf-to-gguf-update.py <huggingface_token> | |
| # | |
| # - Copy-paste the generated get_vocab_base_pre() function into convert-hf-to-gguf.py | |
| # - Update llama.cpp with the new pre-tokenizer if necessary | |
| # | |
| # TODO: generate tokenizer tests for llama.cpp | |
| # TODO: automate the update of convert-hf-to-gguf.py | |
| # | |
| import os | |
| import requests | |
| import sys | |
| import json | |
| from hashlib import sha256 | |
| from enum import IntEnum, auto | |
| class TOKENIZER_TYPE(IntEnum): | |
| SPM = auto() | |
| BPE = auto() | |
| WPM = auto() | |
| # TODO: this string has to exercise as much pre-tokenizer functionality as possible | |
| # will be updated with time - contributions welcome | |
| chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````\"\"\"\"......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL' | |
| if len(sys.argv) == 2: | |
| token = sys.argv[1] | |
| else: | |
| print("Usage: python convert-hf-to-gguf-update.py <huggingface_token>") | |
| sys.exit(1) | |
| # TODO: add models here, base models preferred | |
| models = [ | |
| { "name": "llama-spm", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/meta-llama/Llama-2-7b-hf", }, | |
| { "name": "llama-bpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Meta-Llama-3-8B", }, | |
| { "name": "phi-3", "tokt": TOKENIZER_TYPE.SPM, "repo": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", }, | |
| { "name": "deepseek-llm", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-llm-7b-base", }, | |
| { "name": "deepseek-coder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base", }, | |
| { "name": "falcon", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/tiiuae/falcon-7b", }, | |
| { "name": "bert-bge", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/BAAI/bge-small-en-v1.5", }, | |
| { "name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", }, | |
| { "name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", }, | |
| { "name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", }, | |
| ] | |
| # make directory "models/tokenizers" if it doesn't exist | |
| if not os.path.exists("models/tokenizers"): | |
| os.makedirs("models/tokenizers") | |
| def download_file_with_auth(url, token, save_path): | |
| headers = {"Authorization": f"Bearer {token}"} | |
| response = requests.get(url, headers=headers) | |
| if response.status_code == 200: | |
| with open(save_path, 'wb') as f: | |
| f.write(response.content) | |
| print(f"File {save_path} downloaded successfully") | |
| else: | |
| print(f"Failed to download file. Status code: {response.status_code}") | |
| # download the tokenizer models | |
| for model in models: | |
| name = model["name"] | |
| repo = model["repo"] | |
| tokt = model["tokt"] | |
| if not os.path.exists(f"models/tokenizers/{name}"): | |
| os.makedirs(f"models/tokenizers/{name}") | |
| else: | |
| print(f"Directory models/tokenizers/{name} already exists - skipping") | |
| continue | |
| print(f"Downloading {name} to models/tokenizers/{name}") | |
| url = f"{repo}/raw/main/config.json" | |
| save_path = f"models/tokenizers/{name}/config.json" | |
| download_file_with_auth(url, token, save_path) | |
| url = f"{repo}/raw/main/tokenizer.json" | |
| save_path = f"models/tokenizers/{name}/tokenizer.json" | |
| download_file_with_auth(url, token, save_path) | |
| if tokt == TOKENIZER_TYPE.SPM: | |
| url = f"{repo}/resolve/main/tokenizer.model" | |
| save_path = f"models/tokenizers/{name}/tokenizer.model" | |
| download_file_with_auth(url, token, save_path) | |
| url = f"{repo}/raw/main/tokenizer_config.json" | |
| save_path = f"models/tokenizers/{name}/tokenizer_config.json" | |
| download_file_with_auth(url, token, save_path) | |
| # generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function: | |
| # TODO: auto-update convert-hf-to-gguf.py with the generated function | |
| src_ifs = "" | |
| for model in models: | |
| name = model["name"] | |
| tokt = model["tokt"] | |
| if tokt == TOKENIZER_TYPE.SPM: | |
| continue | |
| # create the tokenizer | |
| from transformers import AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") | |
| chktok = tokenizer.encode(chktxt) | |
| chkhsh = sha256(str(chktok).encode()).hexdigest() | |
| print(f"model: {name}") | |
| print(f"tokt: {tokt}") | |
| print(f"repo: {model['repo']}") | |
| print(f"chktok: {chktok}") | |
| print(f"chkhsh: {chkhsh}") | |
| # print the "pre_tokenizer" content from the tokenizer.json | |
| with open(f"models/tokenizers/{name}/tokenizer.json", "r", encoding="utf-8") as f: | |
| cfg = json.load(f) | |
| pre_tokenizer = cfg["pre_tokenizer"] | |
| print("pre_tokenizer: " + json.dumps(pre_tokenizer, indent=4)) | |
| print(f"\n") | |
| src_ifs += f" if chkhsh == \"{chkhsh}\":\n" | |
| src_ifs += f" # ref: {model['repo']}\n" | |
| src_ifs += f" res = \"{name}\"\n" | |
| src_func = "" | |
| src_func += " def get_vocab_base_pre(self, tokenizer) -> str:\n" | |
| src_func += " # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that\n" | |
| src_func += " # is specific for the BPE pre-tokenizer used by the model\n" | |
| src_func += " # we will use this unique identifier to write a \"tokenizer.ggml.pre\" entry in the GGUF file which we can\n" | |
| src_func += " # use in llama.cpp to implement the same pre-tokenizer\n" | |
| src_func += "\n" | |
| src_func += f" chktxt = {repr(chktxt)}\n" | |
| src_func += "\n" | |
| src_func += " chktok = tokenizer.encode(chktxt)\n" | |
| src_func += " chkhsh = sha256(str(chktok).encode()).hexdigest()\n" | |
| src_func += "\n" | |
| src_func += " print(f\"chktok: {chktok}\")\n" | |
| src_func += " print(f\"chkhsh: {chkhsh}\")\n" | |
| src_func += "\n" | |
| src_func += " res = None\n" | |
| src_func += "\n" | |
| src_func += " # NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script\n" | |
| src_func += " # or pull the latest version of the model from Huggingface\n" | |
| src_func += " # don't edit the hashes manually!\n" | |
| src_func += f"{src_ifs}\n" | |
| src_func += " if res is None:\n" | |
| src_func += " print(\"\\n\")\n" | |
| src_func += " print(\"**************************************************************************************\")\n" | |
| src_func += " print(\"** WARNING: The BPE pre-tokenizer was not recognized!\")\n" | |
| src_func += " print(\"** There are 2 possible reasons for this:\")\n" | |
| src_func += " print(\"** - the model has not been added to convert-hf-to-gguf-update.py yet\")\n" | |
| src_func += " print(\"** - the pre-tokenization config has changed upstream\")\n" | |
| src_func += " print(\"** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.\")\n" | |
| src_func += " print(\"** ref: https://github.com/ggerganov/llama.cpp/pull/6920\")\n" | |
| src_func += " print(\"**\")\n" | |
| src_func += " print(f\"** chkhsh: {chkhsh}\")\n" | |
| src_func += " print(\"**************************************************************************************\")\n" | |
| src_func += " print(\"\\n\")\n" | |
| src_func += " raise NotImplementedError(\"BPE pre-tokenizer was not recognized - update get_vocab_base_pre()\")\n" | |
| src_func += "\n" | |
| src_func += " print(f\"tokenizer.ggml.pre: {res}\")\n" | |
| src_func += " print(f\"chkhsh: {chkhsh}\")\n" | |
| src_func += "\n" | |
| src_func += " return res\n" | |
| print(src_func) | |
| print("\n") | |
| print("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!") | |
| print("\n") | |
| # generate tests for each tokenizer model | |
| tests = [ | |
| "", | |
| " ", | |
| " ", | |
| " ", | |
| "\t", | |
| "\n", | |
| "\n\n", | |
| "\n\n\n", | |
| "\t\n", | |
| "Hello world", | |
| " Hello world", | |
| "Hello World", | |
| " Hello World", | |
| " Hello World!", | |
| "Hello, world!", | |
| " Hello, world!", | |
| " this is 🦙.cpp", | |
| "w048 7tuijk dsdfhu", | |
| "нещо на Български", | |
| "កាន់តែពិសេសអាចខលចេញ", | |
| "🚀 (normal) 😶🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)", | |
| "Hello", | |
| " Hello", | |
| " Hello", | |
| " Hello", | |
| " Hello", | |
| " Hello\n Hello", | |
| " (", | |
| "\n =", | |
| "' era", | |
| "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~", | |
| "3", | |
| "33", | |
| "333", | |
| "3333", | |
| "33333", | |
| "333333", | |
| "3333333", | |
| "33333333", | |
| "333333333", | |
| chktxt, | |
| ] | |
| # write the tests to ./models/ggml-vocab-{name}.gguf.inp | |
| # the format is: | |
| # | |
| # test0 | |
| # __ggml_vocab_test__ | |
| # test1 | |
| # __ggml_vocab_test__ | |
| # ... | |
| # | |
| # with each model, encode all tests and write the results in ./models/ggml-vocab-{name}.gguf.out | |
| # for each test, write the resulting tokens on a separate line | |
| for model in models: | |
| name = model["name"] | |
| tokt = model["tokt"] | |
| # create the tokenizer | |
| from transformers import AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(f"models/tokenizers/{name}") | |
| with open(f"models/ggml-vocab-{name}.gguf.inp", "w", encoding="utf-8") as f: | |
| for text in tests: | |
| f.write(f"{text}") | |
| f.write("\n__ggml_vocab_test__\n") | |
| with open(f"models/ggml-vocab-{name}.gguf.out", "w") as f: | |
| for text in tests: | |
| res = tokenizer.encode(text, add_special_tokens=False) | |
| for r in res: | |
| f.write(f" {r}") | |
| f.write("\n") | |
| print(f"Tests for {name} written in ./models/ggml-vocab-{name}.gguf.*") | |
| # generate commands for creating vocab files | |
| print("\nRun the following commands to generate the vocab files for testing:\n") | |
| for model in models: | |
| name = model["name"] | |
| print(f"python3 convert-hf-to-gguf.py models/tokenizers/{name}/ --outfile models/ggml-vocab-{name}.gguf --vocab-only") | |
| print("\n") | |